Cargando…
Capturing Complex 3D Human Motions with Kernelized Low-Rank Representation from Monocular RGB Camera
Recovering 3D structures from the monocular image sequence is an inherently ambiguous problem that has attracted considerable attention from several research communities. To resolve the ambiguities, a variety of additional priors, such as low-rank shape basis, have been proposed. In this paper, we m...
Autores principales: | Wang, Xuan, Wang, Fei, Chen, Yanan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620964/ https://www.ncbi.nlm.nih.gov/pubmed/28869514 http://dx.doi.org/10.3390/s17092019 |
Ejemplares similares
-
Human motion capture for movement limitation analysis using an RGB-D camera in spondyloarthritis: a validation study
por: Trinidad-Fernández, Manuel, et al.
Publicado: (2021) -
Optimal Superpixel Kernel-Based Kernel Low-Rank and Sparsity Representation for Brain Tumour Segmentation
por: Ge, Ting, et al.
Publicado: (2022) -
Efficient Multiple Kernel Learning Algorithms Using Low-Rank Representation
por: Niu, Wenjia, et al.
Publicado: (2017) -
Dense RGB-D SLAM with Multiple Cameras
por: Meng, Xinrui, et al.
Publicado: (2018) -
Three-Dimensional Object Motion and Velocity Estimation Using a Single Computational RGB-D Camera
por: Lee, Seungwon, et al.
Publicado: (2015)