Cargando…
Conditional Variational Autoencoder for Prediction and Feature Recovery Applied to Intrusion Detection in IoT
The purpose of a Network Intrusion Detection System is to detect intrusive, malicious activities or policy violations in a host or host’s network. In current networks, such systems are becoming more important as the number and variety of attacks increase along with the volume and sensitiveness of th...
Autores principales: | Lopez-Martin, Manuel, Carro, Belen, Sanchez-Esguevillas, Antonio, Lloret, Jaime |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621014/ https://www.ncbi.nlm.nih.gov/pubmed/28846608 http://dx.doi.org/10.3390/s17091967 |
Ejemplares similares
-
Towards an Effective Intrusion Detection Model Using Focal Loss Variational Autoencoder for Internet of Things (IoT)
por: Khanam, Shapla, et al.
Publicado: (2022) -
Towards an Explainable Universal Feature Set for IoT Intrusion Detection
por: Alani, Mohammed M., et al.
Publicado: (2022) -
A Lightweight Intelligent Network Intrusion Detection System Using One-Class Autoencoder and Ensemble Learning for IoT
por: Yao, Wenbin, et al.
Publicado: (2023) -
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022) -
Examining the Suitability of NetFlow Features in Detecting IoT Network Intrusions
por: Awad, Mohammed, et al.
Publicado: (2022)