Cargando…
EEG-Based Brain-Computer Interface for Decoding Motor Imagery Tasks within the Same Hand Using Choi-Williams Time-Frequency Distribution
This paper presents an EEG-based brain-computer interface system for classifying eleven motor imagery (MI) tasks within the same hand. The proposed system utilizes the Choi-Williams time-frequency distribution (CWD) to construct a time-frequency representation (TFR) of the EEG signals. The construct...
Autores principales: | Alazrai, Rami, Alwanni, Hisham, Baslan, Yara, Alnuman, Nasim, Daoud, Mohammad I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621048/ https://www.ncbi.nlm.nih.gov/pubmed/28832513 http://dx.doi.org/10.3390/s17091937 |
Ejemplares similares
-
EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution
por: Alazrai, Rami, et al.
Publicado: (2018) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012) -
Data augmentation strategies for EEG-based motor imagery decoding
por: George, Olawunmi, et al.
Publicado: (2022) -
Across-subject offline decoding of motor imagery from MEG and EEG
por: Halme, Hanna-Leena, et al.
Publicado: (2018) -
Decoding EEG rhythms offline and online during motor imagery for standing and sitting based on a brain-computer interface
por: Triana-Guzman, Nayid, et al.
Publicado: (2022)