Cargando…
Automatic Classification of Tremor Severity in Parkinson’s Disease Using a Wearable Device
Although there is clinical demand for new technology that can accurately measure Parkinsonian tremors, automatic scoring of Parkinsonian tremors using machine-learning approaches has not yet been employed. This study aims to fill this gap by proposing machine-learning algorithms as a way to predict...
Autores principales: | Jeon, Hyoseon, Lee, Woongwoo, Park, Hyeyoung, Lee, Hong Ji, Kim, Sang Kyong, Kim, Han Byul, Jeon, Beomseok, Park, Kwang Suk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621347/ https://www.ncbi.nlm.nih.gov/pubmed/28891942 http://dx.doi.org/10.3390/s17092067 |
Ejemplares similares
-
Correction: Automatic Classification of Tremor Severity in Parkinson’s Disease Using a Wearable Device. Sensors 2017, 17, 2067
por: Jeon, Hyoseon, et al.
Publicado: (2017) -
Clinicians’ Tendencies to Under-Rate Parkinsonian Tremors in the Less Affected Hand
por: Lee, Hong Ji, et al.
Publicado: (2015) -
Semiautomated Algorithm for the Diagnosis of Multiple System Atrophy With Predominant Parkinsonism
por: Lee, Woong-Woo, et al.
Publicado: (2022) -
Wearable Devices for Assessment of Tremor
por: Vescio, Basilio, et al.
Publicado: (2021) -
Automatic Measurement of Postural Abnormalities With a Pose Estimation Algorithm in Parkinson’s Disease
por: Shin, Jung Hwan, et al.
Publicado: (2022)