Cargando…
Detection of Interfacial Debonding in a Rubber–Steel-Layered Structure Using Active Sensing Enabled by Embedded Piezoceramic Transducers
Rubber–steel-layered structures are used in many engineering applications. Laminated rubber–steel bearing, as a type of seismic isolation device, is one of the most important applications of the rubber–steel-layered structures. Interfacial debonding in rubber–steel-layered structures is a typical fa...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621352/ https://www.ncbi.nlm.nih.gov/pubmed/28862666 http://dx.doi.org/10.3390/s17092001 |
Sumario: | Rubber–steel-layered structures are used in many engineering applications. Laminated rubber–steel bearing, as a type of seismic isolation device, is one of the most important applications of the rubber–steel-layered structures. Interfacial debonding in rubber–steel-layered structures is a typical failure mode, which can severely reduce their load-bearing capacity. In this paper, the authors developed a simple but effective active sensing approach using embedded piezoceramic transducers to provide an in-situ detection of the interfacial debonding between the rubber layers and steel plates. A sandwiched rubber–steel-layered specimen, consisting of one rubber layer and two steel plates, was fabricated as the test specimen. A novel installation technique, which allows the piezoceramic transducers to be fully embedded into the steel plates without changing the geometry and the surface conditions of the plates, was also developed in this research. The active sensing approach, in which designed stress waves can propagate between a pair of the embedded piezoceramic transducers (one as an actuator and the other one as a sensor), was employed to detect the steel–rubber debonding. When the rubber–steel debonding occurs, the debonded interfaces will attenuate the propagating stress wave, so that the amplitude of the received signal will decrease. The rubber–steel debonding was generated by pulling the two steel plates in opposite directions in a material-testing machine. The changes of the received signal before and after the debonding were characterized in a time domain and further quantified by using a wavelet packet-based energy index. Experiments on the healthy rubber–steel-layered specimen reveal that the piezoceramic-induced stress wave can propagate through the rubber layer. The destructive test on the specimen demonstrates that the piezoceramic-based active sensing approach can effectively detect the rubber–steel debonding failure in real time. The active sensing approach is often used in structures with “hard” materials, such as steel, concrete, and carbon fiber composites. This research lays a foundation for extending the active sensing approach to damage detection of structures involving “soft” materials, such as rubber. |
---|