Cargando…
Differential Phononic Crystal Sensor: Towards a Temperature Compensation Mechanism for Field Applications Development
Phononic crystals are resonant structures with great potential to be implemented in applications as liquid sensors. The use of the symmetry reduction technique allows introducing relevant transmission features inside bandgaps by creating defect modes in a periodic regular structure. These features c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621375/ https://www.ncbi.nlm.nih.gov/pubmed/28841146 http://dx.doi.org/10.3390/s17091960 |
_version_ | 1783267748401381376 |
---|---|
author | Villa-Arango, Simón Betancur Sánchez, David Torres, Róbinson Kyriacou, Panayiotis Lucklum, Ralf |
author_facet | Villa-Arango, Simón Betancur Sánchez, David Torres, Róbinson Kyriacou, Panayiotis Lucklum, Ralf |
author_sort | Villa-Arango, Simón |
collection | PubMed |
description | Phononic crystals are resonant structures with great potential to be implemented in applications as liquid sensors. The use of the symmetry reduction technique allows introducing relevant transmission features inside bandgaps by creating defect modes in a periodic regular structure. These features can be used as measures to quantify changes in the speed of sound of liquid samples that could be related to the concentration of analytes or the presence of pathogens among other interesting applications. In order to be able to implement this new technology in more challenging applications, such as biomedical applications, it is necessary to have a very precise and accurate measurement. Changes in temperature greatly affect the speed of sound of the liquid samples, causing errors in the measurements. This article presents a phononic crystal sensor that, by introducing additional defect modes, can carry out differential measurements as a temperature compensation mechanism. Theoretical studies using the transmission line model and analytes at various temperatures show that the proposed temperature compensation mechanism enhances the performance of the sensor in a significant way. This temperature compensation strategy could also be implemented in crystals with different topologies. |
format | Online Article Text |
id | pubmed-5621375 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-56213752017-10-03 Differential Phononic Crystal Sensor: Towards a Temperature Compensation Mechanism for Field Applications Development Villa-Arango, Simón Betancur Sánchez, David Torres, Róbinson Kyriacou, Panayiotis Lucklum, Ralf Sensors (Basel) Article Phononic crystals are resonant structures with great potential to be implemented in applications as liquid sensors. The use of the symmetry reduction technique allows introducing relevant transmission features inside bandgaps by creating defect modes in a periodic regular structure. These features can be used as measures to quantify changes in the speed of sound of liquid samples that could be related to the concentration of analytes or the presence of pathogens among other interesting applications. In order to be able to implement this new technology in more challenging applications, such as biomedical applications, it is necessary to have a very precise and accurate measurement. Changes in temperature greatly affect the speed of sound of the liquid samples, causing errors in the measurements. This article presents a phononic crystal sensor that, by introducing additional defect modes, can carry out differential measurements as a temperature compensation mechanism. Theoretical studies using the transmission line model and analytes at various temperatures show that the proposed temperature compensation mechanism enhances the performance of the sensor in a significant way. This temperature compensation strategy could also be implemented in crystals with different topologies. MDPI 2017-08-25 /pmc/articles/PMC5621375/ /pubmed/28841146 http://dx.doi.org/10.3390/s17091960 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Villa-Arango, Simón Betancur Sánchez, David Torres, Róbinson Kyriacou, Panayiotis Lucklum, Ralf Differential Phononic Crystal Sensor: Towards a Temperature Compensation Mechanism for Field Applications Development |
title | Differential Phononic Crystal Sensor: Towards a Temperature Compensation Mechanism for Field Applications Development |
title_full | Differential Phononic Crystal Sensor: Towards a Temperature Compensation Mechanism for Field Applications Development |
title_fullStr | Differential Phononic Crystal Sensor: Towards a Temperature Compensation Mechanism for Field Applications Development |
title_full_unstemmed | Differential Phononic Crystal Sensor: Towards a Temperature Compensation Mechanism for Field Applications Development |
title_short | Differential Phononic Crystal Sensor: Towards a Temperature Compensation Mechanism for Field Applications Development |
title_sort | differential phononic crystal sensor: towards a temperature compensation mechanism for field applications development |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621375/ https://www.ncbi.nlm.nih.gov/pubmed/28841146 http://dx.doi.org/10.3390/s17091960 |
work_keys_str_mv | AT villaarangosimon differentialphononiccrystalsensortowardsatemperaturecompensationmechanismforfieldapplicationsdevelopment AT betancursanchezdavid differentialphononiccrystalsensortowardsatemperaturecompensationmechanismforfieldapplicationsdevelopment AT torresrobinson differentialphononiccrystalsensortowardsatemperaturecompensationmechanismforfieldapplicationsdevelopment AT kyriacoupanayiotis differentialphononiccrystalsensortowardsatemperaturecompensationmechanismforfieldapplicationsdevelopment AT lucklumralf differentialphononiccrystalsensortowardsatemperaturecompensationmechanismforfieldapplicationsdevelopment |