Cargando…
A Robust Sparse Representation Model for Hyperspectral Image Classification †
Sparse representation has been extensively investigated for hyperspectral image (HSI) classification and led to substantial improvements in the performance over the traditional methods, such as support vector machine (SVM). However, the existing sparsity-based classification methods typically assume...
Autores principales: | Huang, Shaoguang, Zhang, Hongyan, Pižurica, Aleksandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621471/ https://www.ncbi.nlm.nih.gov/pubmed/28895908 http://dx.doi.org/10.3390/s17092087 |
Ejemplares similares
-
A Robust Dynamic Classifier Selection Approach for Hyperspectral Images with Imprecise Label Information
por: Li, Meizhu, et al.
Publicado: (2020) -
Improved Classification Method Based on the Diverse Density and Sparse Representation Model for a Hyperspectral Image
por: Li, Na, et al.
Publicado: (2019) -
Hyperspectral image spectral-spatial classification via weighted Laplacian smoothing constraint-based sparse representation
por: Chen, Eryang, et al.
Publicado: (2021) -
Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation
por: Sun, Rui, et al.
Publicado: (2016) -
Group Sparse Representation Based on Nonlocal Spatial and Local Spectral Similarity for Hyperspectral Imagery Classification
por: Yu, Haoyang, et al.
Publicado: (2018)