Cargando…

Gene expression of benthic amphipods (genus: Diporeia) in relation to a circular ssDNA virus across two Laurentian Great Lakes

Circular rep-encoding ssDNA (CRESS-DNA) viruses are common constituents of invertebrate viral consortia. Despite their ubiquity and sequence diversity, the effects of CRESS-DNA viruses on invertebrate biology and ecology remain largely unknown. This study assessed the relationship between the transc...

Descripción completa

Detalles Bibliográficos
Autores principales: Bistolas, Kalia S.I., Rudstam, Lars G., Hewson, Ian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621510/
https://www.ncbi.nlm.nih.gov/pubmed/28966890
http://dx.doi.org/10.7717/peerj.3810
Descripción
Sumario:Circular rep-encoding ssDNA (CRESS-DNA) viruses are common constituents of invertebrate viral consortia. Despite their ubiquity and sequence diversity, the effects of CRESS-DNA viruses on invertebrate biology and ecology remain largely unknown. This study assessed the relationship between the transcriptional profile of benthic amphipods of genus Diporeia and the presence of the CRESS-DNA virus, LM29173, in the Laurentian Great Lakes to provide potential insight into the influence of these viruses on invertebrate gene expression. Twelve transcriptomes derived from Diporeia were compared, representing organisms from two amphipod haplotype clades (Great Lakes Michigan and Superior, defined by COI barcode sequencing) with varying viral loads (up to 3 × 10(6) genome copies organism(−1)). Read recruitment to de novo assembled transcripts revealed 2,208 significantly over or underexpressed contigs in transcriptomes with above average LM29173 load. Of these contigs, 31.5% were assigned a putative function. The greatest proportion of annotated, differentially expressed transcripts were associated with functions including: (1) replication, recombination, and repair, (2) cell structure/biogenesis, and (3) post-translational modification, protein turnover, and chaperones. Contigs putatively associated with innate immunity displayed no consistent pattern of expression, though several transcripts were significantly overexpressed in amphipods with high viral load. Quantitation (RT-qPCR) of target transcripts, non-muscular myosin heavy chain, β-actin, and ubiquitin-conjugating enzyme E2, corroborated transcriptome analysis and indicated that Lake Michigan and Lake Superior amphipods with high LM29173 load exhibit lake-specific trends in gene expression. While this investigation provides the first comparative survey of the transcriptional profile of invertebrates of variable CRESS-DNA viral load, additional inquiry is required to define the scope of host-specific responses to potential infection.