Cargando…

SWI/SNF Infobase—An exclusive information portal for SWI/SNF remodeling complex subunits

Chromatin remodeling complexes facilitate the access of condensed genomic DNA during transcription, replication, and repair, by altering the histone-DNA contacts in the nucleosome structures. SWI/SNF (SWItch/Sucrose Non-Fermentable) family of ATP dependent chromatin remodeling complexes have been do...

Descripción completa

Detalles Bibliográficos
Autores principales: Mani, Udayakumar, S., Alagu Sankareswaran, Goutham R. N., Arun, Mohan S., Suma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621669/
https://www.ncbi.nlm.nih.gov/pubmed/28961249
http://dx.doi.org/10.1371/journal.pone.0184445
Descripción
Sumario:Chromatin remodeling complexes facilitate the access of condensed genomic DNA during transcription, replication, and repair, by altering the histone-DNA contacts in the nucleosome structures. SWI/SNF (SWItch/Sucrose Non-Fermentable) family of ATP dependent chromatin remodeling complexes have been documented for their tumour suppressor function. Recent studies have reported the high frequency of cancer causing mutations in this protein family. There exist multiple subunits for this complex and can form context-dependent sub-complexes. The cataloguing of individual subunits of this complex is essential for understanding their specific functions and their mechanism of action during chromatin remodeling. This would also facilitate further studies to characterize cancer causing mutations in SWI/SNF subunits. In the current study, a database containing information on the subunits of SWI/SNF-α (BRG1/BRM-Associated Factors (BAF)) and SWI/SNF-β (Polybromo-Associated BAF (PBAF)) sub classes of SWI/SNF family has been curated and catalogued. The database hosts information on 27 distinct SWI/SNF subunits from 20 organisms spanning a wide evolutionary range of eukaryotes. A non-redundant set of 522 genes coding for SWI/SNF subunits have been documented in the database. A detailed annotation on each subunit, including basic protein/gene information, protein sequence, functional domains, homologs and missense mutations of human proteins have been provided with a user-friendly graphical interface. The SWI/SNF Infobase presented here, would be a first of its kind exclusive information portal on SWI/SNF complex subunits and would be a valuable resource for the research community working on chromatin remodeling. The database is available at http://scbt.sastra.edu/swisnfdb/index.php.