Cargando…
Novel archaeal thermostable cellulases from an oil reservoir metagenome
Microbial assemblages were sampled from an offshore deep sub-surface petroleum reservoir 2.5 km below the ocean floor off the coast of Norway, providing conditions of high temperature and pressure, to identify new thermostable enzymes. In this study, we used DNA sequences obtained directly from the...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622026/ https://www.ncbi.nlm.nih.gov/pubmed/28963711 http://dx.doi.org/10.1186/s13568-017-0485-z |
_version_ | 1783267826431164416 |
---|---|
author | Lewin, Anna Zhou, Jinglie Pham, Vu Thuy Trang Haugen, Tone Zeiny, Mohamed El Aarstad, Olav Liebl, Wolfgang Wentzel, Alexander Liles, Mark R. |
author_facet | Lewin, Anna Zhou, Jinglie Pham, Vu Thuy Trang Haugen, Tone Zeiny, Mohamed El Aarstad, Olav Liebl, Wolfgang Wentzel, Alexander Liles, Mark R. |
author_sort | Lewin, Anna |
collection | PubMed |
description | Microbial assemblages were sampled from an offshore deep sub-surface petroleum reservoir 2.5 km below the ocean floor off the coast of Norway, providing conditions of high temperature and pressure, to identify new thermostable enzymes. In this study, we used DNA sequences obtained directly from the sample metagenome and from a derived fosmid library to survey the functional diversity of this extreme habitat. The metagenomic fosmid library containing 11,520 clones was screened using function- and sequence-based methods to identify recombinant clones expressing carbohydrate-degrading enzymes. Open reading frames (ORFs) encoding carbohydrate-degrading enzymes were predicted by BLAST against the CAZy database, and many fosmid clones expressing carbohydrate-degrading activities were discovered by functional screening using Escherichia coli as a heterologous host. Each complete ORF predicted to encode a cellulase identified from sequence- or function-based screening was subcloned in an expression vector. Five subclones was found to have significant activity using a fluorescent cellulose model substrate, and three of these were observed to be highly thermostable. Based on phylogenetic analyses, the thermostable cellulases were derived from thermophilic Archaea and are distinct from known cellulases. Cellulase F1, obtained from function-based screening, contains two distinct cellulase modules, perhaps resulting from fusion of two archaeal cellulases and with a novel protein structure that may result in enhanced activity and thermostability. This enzyme was found to exhibit exocellulase function and to have a remarkably high activity compared to commercially available enzymes. Results from this study highlight the complementarity of hybrid approaches for enzyme discovery, combining sequence- and function-based screening. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13568-017-0485-z) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5622026 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-56220262017-10-13 Novel archaeal thermostable cellulases from an oil reservoir metagenome Lewin, Anna Zhou, Jinglie Pham, Vu Thuy Trang Haugen, Tone Zeiny, Mohamed El Aarstad, Olav Liebl, Wolfgang Wentzel, Alexander Liles, Mark R. AMB Express Original Article Microbial assemblages were sampled from an offshore deep sub-surface petroleum reservoir 2.5 km below the ocean floor off the coast of Norway, providing conditions of high temperature and pressure, to identify new thermostable enzymes. In this study, we used DNA sequences obtained directly from the sample metagenome and from a derived fosmid library to survey the functional diversity of this extreme habitat. The metagenomic fosmid library containing 11,520 clones was screened using function- and sequence-based methods to identify recombinant clones expressing carbohydrate-degrading enzymes. Open reading frames (ORFs) encoding carbohydrate-degrading enzymes were predicted by BLAST against the CAZy database, and many fosmid clones expressing carbohydrate-degrading activities were discovered by functional screening using Escherichia coli as a heterologous host. Each complete ORF predicted to encode a cellulase identified from sequence- or function-based screening was subcloned in an expression vector. Five subclones was found to have significant activity using a fluorescent cellulose model substrate, and three of these were observed to be highly thermostable. Based on phylogenetic analyses, the thermostable cellulases were derived from thermophilic Archaea and are distinct from known cellulases. Cellulase F1, obtained from function-based screening, contains two distinct cellulase modules, perhaps resulting from fusion of two archaeal cellulases and with a novel protein structure that may result in enhanced activity and thermostability. This enzyme was found to exhibit exocellulase function and to have a remarkably high activity compared to commercially available enzymes. Results from this study highlight the complementarity of hybrid approaches for enzyme discovery, combining sequence- and function-based screening. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13568-017-0485-z) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2017-09-29 /pmc/articles/PMC5622026/ /pubmed/28963711 http://dx.doi.org/10.1186/s13568-017-0485-z Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Lewin, Anna Zhou, Jinglie Pham, Vu Thuy Trang Haugen, Tone Zeiny, Mohamed El Aarstad, Olav Liebl, Wolfgang Wentzel, Alexander Liles, Mark R. Novel archaeal thermostable cellulases from an oil reservoir metagenome |
title | Novel archaeal thermostable cellulases from an oil reservoir metagenome |
title_full | Novel archaeal thermostable cellulases from an oil reservoir metagenome |
title_fullStr | Novel archaeal thermostable cellulases from an oil reservoir metagenome |
title_full_unstemmed | Novel archaeal thermostable cellulases from an oil reservoir metagenome |
title_short | Novel archaeal thermostable cellulases from an oil reservoir metagenome |
title_sort | novel archaeal thermostable cellulases from an oil reservoir metagenome |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622026/ https://www.ncbi.nlm.nih.gov/pubmed/28963711 http://dx.doi.org/10.1186/s13568-017-0485-z |
work_keys_str_mv | AT lewinanna novelarchaealthermostablecellulasesfromanoilreservoirmetagenome AT zhoujinglie novelarchaealthermostablecellulasesfromanoilreservoirmetagenome AT phamvuthuytrang novelarchaealthermostablecellulasesfromanoilreservoirmetagenome AT haugentone novelarchaealthermostablecellulasesfromanoilreservoirmetagenome AT zeinymohamedel novelarchaealthermostablecellulasesfromanoilreservoirmetagenome AT aarstadolav novelarchaealthermostablecellulasesfromanoilreservoirmetagenome AT lieblwolfgang novelarchaealthermostablecellulasesfromanoilreservoirmetagenome AT wentzelalexander novelarchaealthermostablecellulasesfromanoilreservoirmetagenome AT lilesmarkr novelarchaealthermostablecellulasesfromanoilreservoirmetagenome |