Cargando…

Comparison of Solid-Water Partitions of Radiocesium in River Waters in Fukushima and Chernobyl Areas

Adsorption of radiocesium (RCs) on particulate matters in aquatic environment is important to understand its mobility and bioavailability. We here focused on factors controlling partition of RCs on particulate matters and sediments in Kuchibuto (Fukushima) and Pripyat (Chernobyl) Rivers, though RCs...

Descripción completa

Detalles Bibliográficos
Autores principales: Takahashi, Yoshio, Fan, Qiaohui, Suga, Hiroki, Tanaka, Kazuya, Sakaguchi, Aya, Takeichi, Yasuo, Ono, Kanta, Mase, Kazuhiko, Kato, Kenji, Kanivets, Vladimir V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622054/
https://www.ncbi.nlm.nih.gov/pubmed/28963532
http://dx.doi.org/10.1038/s41598-017-12391-7
Descripción
Sumario:Adsorption of radiocesium (RCs) on particulate matters in aquatic environment is important to understand its mobility and bioavailability. We here focused on factors controlling partition of RCs on particulate matters and sediments in Kuchibuto (Fukushima) and Pripyat (Chernobyl) Rivers, though RCs level in water was much smaller than WHO guideline. Moreover, Cs speciation and organic matter-clay mineral interaction were studied: (i) extended X-ray absorption fine structure showed that the contribution of outer-sphere complex of Cs on particulate matters is larger in Chernobyl than in Fukushima and (ii) scanning transmission X-ray microscope revealed larger association of humic substances and clay minerals in Chernobyl partly due to high [Ca(2+)] in the Pripyat River. Consequently, RCs is more soluble in the Pripyat River due to weaker interaction of RCs with clay minerals caused by the inhibition effect of the adsorbed humic substances. In contrast, particulate matters and sediments in the Kuchibuto River display high adsorption affinity with lesser inhibition effect of adsorbed humic substances. This difference is possibly governed by the geology and soil type of provenances surrounding both catchments (Fukushima: weathered granite; Chernobyl: peat wetland and carbonate platform) which leads to high concentrations of organic matter and Ca(2+) in the Pripyat River.