Cargando…
Global network random walk for predicting potential human lncRNA-disease associations
There is more and more evidence that the mutation and dysregulation of long non-coding RNA (lncRNA) are associated with numerous diseases, including cancers. However, experimental methods to identify associations between lncRNAs and diseases are expensive and time-consuming. Effective computational...
Autores principales: | Gu, Changlong, Liao, Bo, Li, Xiaoying, Cai, Lijun, Li, Zejun, Li, Keqin, Yang, Jialiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622075/ https://www.ncbi.nlm.nih.gov/pubmed/28963512 http://dx.doi.org/10.1038/s41598-017-12763-z |
Ejemplares similares
-
Uncover miRNA-Disease Association by Exploiting Global Network Similarity
por: Chen, Min, et al.
Publicado: (2016) -
Network Consistency Projection for Human miRNA-Disease Associations Inference
por: Gu, Changlong, et al.
Publicado: (2016) -
Predicting LncRNA–Disease Association by a Random Walk With Restart on Multiplex and Heterogeneous Networks
por: Yao, Yuhua, et al.
Publicado: (2021) -
BPLLDA: Predicting lncRNA-Disease Associations Based on Simple Paths With Limited Lengths in a Heterogeneous Network
por: Xiao, Xiaofang, et al.
Publicado: (2018) -
Global Similarity Method Based on a Two-tier Random Walk for the Prediction of microRNA–Disease Association
por: Chen, Min, et al.
Publicado: (2018)