Cargando…

Synthesis of prenylated flavonols and their potents as estrogen receptor modulator

Prenylated flavonols are known as phytoestrogen and have good bioactivties. However, their abundances in nature are pretty low. It is required to find an efficient synthesis technique. Icariin is a prenylated flavonol glycoside with low cost. It can be used to synthesize different prenylated flavono...

Descripción completa

Detalles Bibliográficos
Autores principales: Tao, Zhenru, Liu, Juan, Jiang, Yueming, Gong, Liang, Yang, Bao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622168/
https://www.ncbi.nlm.nih.gov/pubmed/28963488
http://dx.doi.org/10.1038/s41598-017-12640-9
Descripción
Sumario:Prenylated flavonols are known as phytoestrogen and have good bioactivties. However, their abundances in nature are pretty low. It is required to find an efficient synthesis technique. Icariin is a prenylated flavonol glycoside with low cost. It can be used to synthesize different prenylated flavonols. A combination of cellulase and trifluoacetic acid hydrolysis could effectively remove rhamnose and glucose from icariin. Icaritin, anhydroicaritin and wushanicaritin were the leading prenylated flavonol products. Their affinities to estrogen receptors α and β were predicted by docking study. The weak affinity of wushanicaritin indicated that prenyl hydroxylation impaired its affinity to estrogen receptor β. The prenyl cyclization led to a loss of affinity to both receptors. The interactions between icaritin and ligand binding cavity of estrogen receptor β were simulated. π-π stacking and hydrophobic forces were predicted to be the dominant interactions positioning icaritin, which induced the helix (H12) forming an activated conformation.