Cargando…
Asymmetric effects in waveguide systems using PT symmetry and zero index metamaterials
Here we demonstrate directional excitation and asymmetric reflection by using parity-time (PT) symmetric and zero index metamaterials (ZIMs) in a three-port waveguide system. The principle lies on that the field distribution at gain/ loss interface is significantly affected by the incident direction...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622174/ https://www.ncbi.nlm.nih.gov/pubmed/28963454 http://dx.doi.org/10.1038/s41598-017-12592-0 |
Sumario: | Here we demonstrate directional excitation and asymmetric reflection by using parity-time (PT) symmetric and zero index metamaterials (ZIMs) in a three-port waveguide system. The principle lies on that the field distribution at gain/ loss interface is significantly affected by the incident direction of electromagnetic wave. By taking advantage of the empty volume feature of ZIMs, these asymmetric effects are extended to a more general three-port waveguide system. In addition, by exciting a weak modulated signal in branch port in our proposed design, unidirectional transmission with an unbroken propagation state is achieved, opening up a new way distinguished from the present technologies. |
---|