Cargando…
Parallel triplex structure formed between stretched single-stranded DNA and homologous duplex DNA
The interaction between the single-stranded DNA and the homologous duplex DNA is essential for DNA homologous repair. Here, we report that parallel triplex structure can form spontaneously between a mechanically extended ssDNA and a homologous dsDNA in protein-free condition. The triplex has a conto...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622322/ https://www.ncbi.nlm.nih.gov/pubmed/28973442 http://dx.doi.org/10.1093/nar/gkx628 |
Sumario: | The interaction between the single-stranded DNA and the homologous duplex DNA is essential for DNA homologous repair. Here, we report that parallel triplex structure can form spontaneously between a mechanically extended ssDNA and a homologous dsDNA in protein-free condition. The triplex has a contour length close to that of a B-form DNA duplex and remains stable after force is released. The binding energy between the ssDNA and the homologous dsDNA in the triplex is estimated to be comparable to the basepairing energy in a B-form dsDNA. As ssDNA is in a similar extended conformation within recombinase-coated nucleoprotein filaments, we propose that the parallel triplex may form and serve as an intermediate during recombinase-catalyzed homologous joint formation. |
---|