Cargando…
Fangorn Forest (F2): a machine learning approach to classify genes and genera in the family Geminiviridae
BACKGROUND: Geminiviruses infect a broad range of cultivated and non-cultivated plants, causing significant economic losses worldwide. The studies of the diversity of species, taxonomy, mechanisms of evolution, geographic distribution, and mechanisms of interaction of these pathogens with the host h...
Autores principales: | Silva, José Cleydson F., Carvalho, Thales F. M., Fontes, Elizabeth P. B., Cerqueira, Fabio R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622471/ https://www.ncbi.nlm.nih.gov/pubmed/28964254 http://dx.doi.org/10.1186/s12859-017-1839-x |
Ejemplares similares
-
Rama: a machine learning approach for ribosomal protein prediction in plants
por: Carvalho, Thales Francisco Mota, et al.
Publicado: (2017) -
ICTV Virus Taxonomy Profile: Geminiviridae
por: Zerbini, F. Murilo, et al.
Publicado: (2017) -
A VIGS screen identifies immunity in the Arabidopsis Pla‐1 accession to viruses in two different genera of the Geminiviridae
por: Reyes, Maria Ines, et al.
Publicado: (2017) -
ICTV Virus Taxonomy Profile: Geminiviridae 2021
por: Fiallo-Olivé, Elvira, et al.
Publicado: (2021) -
Infectivity, effects on helper viruses and whitefly transmission of the deltasatellites associated with sweepoviruses (genus Begomovirus, family Geminiviridae)
por: Hassan, Ishtiaq, et al.
Publicado: (2016)