Cargando…
Amotosalen/ultraviolet A pathogen inactivation technology reduces platelet activatability, induces apoptosis and accelerates clearance
Amotosalen and ultraviolet A (UVA) photochemical-based pathogen reduction using the Intercept™ Blood System (IBS) is an effective and established technology for platelet and plasma components, which is adopted in more than 40 countries worldwide. Several reports point towards a reduced platelet func...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ferrata Storti Foundation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622849/ https://www.ncbi.nlm.nih.gov/pubmed/28729303 http://dx.doi.org/10.3324/haematol.2017.164137 |
Sumario: | Amotosalen and ultraviolet A (UVA) photochemical-based pathogen reduction using the Intercept™ Blood System (IBS) is an effective and established technology for platelet and plasma components, which is adopted in more than 40 countries worldwide. Several reports point towards a reduced platelet function after Amotosalen/UVA exposure. The study herein was undertaken to identify the mechanisms responsible for the early impairment of platelet function by the IBS. Twenty-five platelet apheresis units were collected from healthy volunteers following standard procedures and split into 2 components, 1 untreated and the other treated with Amotosalen/UVA. Platelet impedance aggregation in response to collagen and thrombin was reduced by 80% and 60%, respectively, in IBS-treated units at day 1 of storage. Glycoprotein Ib (GpIb) levels were significantly lower in IBS samples and soluble glycocalicin correspondingly augmented; furthermore, GpIbα was significantly more desialylated as shown by Erythrina Cristagalli Lectin (ECL) binding. The pro-apoptotic Bak protein was significantly increased, as well as the MAPK p38 phosphorylation and caspase-3 cleavage. Stored IBS-treated platelets injected into immune-deficient nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice showed a faster clearance. We conclude that the IBS induces platelet p38 activation, GpIb shedding and platelet apoptosis through a caspase-dependent mechanism, thus reducing platelet function and survival. These mechanisms are of relevance in transfusion medicine, where the IBS increases patient safety at the expense of platelet function and survival. |
---|