Cargando…

Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol

Background: Salmonella Enteritidis phage type 8 (PT8) is a major poultry-associated Salmonella strain implicated in foodborne outbreaks in the United States. We previously reported that two plant-derived compounds generally recognized as safe (GRAS), trans-cinnamaldehyde (TC), and eugenol (EG), sign...

Descripción completa

Detalles Bibliográficos
Autores principales: Kollanoor Johny, Anup, Frye, Jonathan G., Donoghue, Annie, Donoghue, Dan J., Porwollik, Steffen, McClelland, Michael, Venkitanarayanan, Kumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623010/
https://www.ncbi.nlm.nih.gov/pubmed/29018419
http://dx.doi.org/10.3389/fmicb.2017.01828
_version_ 1783268034165604352
author Kollanoor Johny, Anup
Frye, Jonathan G.
Donoghue, Annie
Donoghue, Dan J.
Porwollik, Steffen
McClelland, Michael
Venkitanarayanan, Kumar
author_facet Kollanoor Johny, Anup
Frye, Jonathan G.
Donoghue, Annie
Donoghue, Dan J.
Porwollik, Steffen
McClelland, Michael
Venkitanarayanan, Kumar
author_sort Kollanoor Johny, Anup
collection PubMed
description Background: Salmonella Enteritidis phage type 8 (PT8) is a major poultry-associated Salmonella strain implicated in foodborne outbreaks in the United States. We previously reported that two plant-derived compounds generally recognized as safe (GRAS), trans-cinnamaldehyde (TC), and eugenol (EG), significantly reduced S. Enteritidis colonization in broiler and layer chickens. To elucidate potential PT8 genes affected by TC and EG during colonization, a whole-genome microarray analysis of the bacterium treated with TC and EG was conducted. Results: S. Enteritidis PT8 was grown in Luria-Bertani broth at 37°C to an OD(600) of ~0.5. Subinhibitory concentrations (SICs; concentration that does not inhibit bacterial growth) of TC (0.01%; 0.75 mM) or EG (0.04%; 2.46 mM) were then added to the culture. S. Enteritidis PT8 RNA was extracted before and 30 min after TC or EG addition. Labeled cDNA from three replicate experiments was subsequently hybridized to a microarray of over 99% of S. Enteritidis PT4 genes, and the hybridization signals were quantified. The plant-derived compounds down-regulated (P < 0.005) expression of S. Enteritidis PT8 genes involved in flagellar motility, regulation of the Salmonella Pathogenicity Island 1, and invasion of intestinal epithelial cells. TC and EG also suppressed transcription of genes encoding multiple transport systems and outer membrane proteins. Moreover, several metabolic and biosynthetic pathways in the pathogen were down-regulated during exposure to the plant-derived compounds. Both TC and EG stimulated the transcription of heat shock genes, such as dnaK, dnaJ, ibpB, and ibpA in S. Enteritidis PT8 (P < 0.005). The results obtained from microarray were validated using a quantitative real-time PCR. Conclusion: The plant-derived compounds TC and EG exert antimicrobial effects on S. Enteritidis PT8 by affecting multiple genes, including those associated with virulence, colonization, cell membrane composition, and transport systems.
format Online
Article
Text
id pubmed-5623010
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-56230102017-10-10 Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol Kollanoor Johny, Anup Frye, Jonathan G. Donoghue, Annie Donoghue, Dan J. Porwollik, Steffen McClelland, Michael Venkitanarayanan, Kumar Front Microbiol Microbiology Background: Salmonella Enteritidis phage type 8 (PT8) is a major poultry-associated Salmonella strain implicated in foodborne outbreaks in the United States. We previously reported that two plant-derived compounds generally recognized as safe (GRAS), trans-cinnamaldehyde (TC), and eugenol (EG), significantly reduced S. Enteritidis colonization in broiler and layer chickens. To elucidate potential PT8 genes affected by TC and EG during colonization, a whole-genome microarray analysis of the bacterium treated with TC and EG was conducted. Results: S. Enteritidis PT8 was grown in Luria-Bertani broth at 37°C to an OD(600) of ~0.5. Subinhibitory concentrations (SICs; concentration that does not inhibit bacterial growth) of TC (0.01%; 0.75 mM) or EG (0.04%; 2.46 mM) were then added to the culture. S. Enteritidis PT8 RNA was extracted before and 30 min after TC or EG addition. Labeled cDNA from three replicate experiments was subsequently hybridized to a microarray of over 99% of S. Enteritidis PT4 genes, and the hybridization signals were quantified. The plant-derived compounds down-regulated (P < 0.005) expression of S. Enteritidis PT8 genes involved in flagellar motility, regulation of the Salmonella Pathogenicity Island 1, and invasion of intestinal epithelial cells. TC and EG also suppressed transcription of genes encoding multiple transport systems and outer membrane proteins. Moreover, several metabolic and biosynthetic pathways in the pathogen were down-regulated during exposure to the plant-derived compounds. Both TC and EG stimulated the transcription of heat shock genes, such as dnaK, dnaJ, ibpB, and ibpA in S. Enteritidis PT8 (P < 0.005). The results obtained from microarray were validated using a quantitative real-time PCR. Conclusion: The plant-derived compounds TC and EG exert antimicrobial effects on S. Enteritidis PT8 by affecting multiple genes, including those associated with virulence, colonization, cell membrane composition, and transport systems. Frontiers Media S.A. 2017-09-26 /pmc/articles/PMC5623010/ /pubmed/29018419 http://dx.doi.org/10.3389/fmicb.2017.01828 Text en Copyright © 2017 Kollanoor Johny, Frye, Donoghue, Donoghue, Porwollik, McClelland and Venkitanarayanan. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Kollanoor Johny, Anup
Frye, Jonathan G.
Donoghue, Annie
Donoghue, Dan J.
Porwollik, Steffen
McClelland, Michael
Venkitanarayanan, Kumar
Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol
title Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol
title_full Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol
title_fullStr Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol
title_full_unstemmed Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol
title_short Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol
title_sort gene expression response of salmonella enterica serotype enteritidis phage type 8 to subinhibitory concentrations of the plant-derived compounds trans-cinnamaldehyde and eugenol
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623010/
https://www.ncbi.nlm.nih.gov/pubmed/29018419
http://dx.doi.org/10.3389/fmicb.2017.01828
work_keys_str_mv AT kollanoorjohnyanup geneexpressionresponseofsalmonellaentericaserotypeenteritidisphagetype8tosubinhibitoryconcentrationsoftheplantderivedcompoundstranscinnamaldehydeandeugenol
AT fryejonathang geneexpressionresponseofsalmonellaentericaserotypeenteritidisphagetype8tosubinhibitoryconcentrationsoftheplantderivedcompoundstranscinnamaldehydeandeugenol
AT donoghueannie geneexpressionresponseofsalmonellaentericaserotypeenteritidisphagetype8tosubinhibitoryconcentrationsoftheplantderivedcompoundstranscinnamaldehydeandeugenol
AT donoghuedanj geneexpressionresponseofsalmonellaentericaserotypeenteritidisphagetype8tosubinhibitoryconcentrationsoftheplantderivedcompoundstranscinnamaldehydeandeugenol
AT porwolliksteffen geneexpressionresponseofsalmonellaentericaserotypeenteritidisphagetype8tosubinhibitoryconcentrationsoftheplantderivedcompoundstranscinnamaldehydeandeugenol
AT mcclellandmichael geneexpressionresponseofsalmonellaentericaserotypeenteritidisphagetype8tosubinhibitoryconcentrationsoftheplantderivedcompoundstranscinnamaldehydeandeugenol
AT venkitanarayanankumar geneexpressionresponseofsalmonellaentericaserotypeenteritidisphagetype8tosubinhibitoryconcentrationsoftheplantderivedcompoundstranscinnamaldehydeandeugenol