Cargando…
Predicting stimulation-dependent enhancer-promoter interactions from ChIP-Seq time course data
We have developed a machine learning approach to predict stimulation-dependent enhancer-promoter interactions using evidence from changes in genomic protein occupancy over time. The occupancy of estrogen receptor alpha (ERα), RNA polymerase (Pol II) and histone marks H2AZ and H3K4me3 were measured o...
Autores principales: | Dzida, Tomasz, Iqbal, Mudassar, Charapitsa, Iryna, Reid, George, Stunnenberg, Henk, Matarese, Filomena, Grote, Korbinian, Honkela, Antti, Rattray, Magnus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623311/ https://www.ncbi.nlm.nih.gov/pubmed/28970965 http://dx.doi.org/10.7717/peerj.3742 |
Ejemplares similares
-
Validating a re-implementation of an algorithm to integrate transcriptome and ChIP-seq data
por: Ahmed, Mahmoud, et al.
Publicado: (2023) -
Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses
por: Golosova, Olga, et al.
Publicado: (2014) -
Inference of RNA Polymerase II Transcription Dynamics from Chromatin Immunoprecipitation Time Course Data
por: wa Maina, Ciira, et al.
Publicado: (2014) -
Software pipelines for RNA-Seq, ChIP-Seq and germline variant calling analyses in common workflow language (CWL)
por: Kyritsis, Konstantinos A., et al.
Publicado: (2023) -
ChIP-PED enhances the analysis of ChIP-seq and ChIP-chip data
por: Wu, George, et al.
Publicado: (2013)