Cargando…

Functional Diversity of Fungal Communities in Soil Contaminated with Diesel Oil

The widespread use and consumption of crude oil draws the public’s attention to the fate of petroleum hydrocarbons in the environment, as they can permeate the soil environment in an uncontrollable manner. Contamination of soils with petroleum products, including diesel oil (DO), can cause changes i...

Descripción completa

Detalles Bibliográficos
Autores principales: Borowik, Agata, Wyszkowska, Jadwiga, Oszust, Karolina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623761/
https://www.ncbi.nlm.nih.gov/pubmed/29021782
http://dx.doi.org/10.3389/fmicb.2017.01862
Descripción
Sumario:The widespread use and consumption of crude oil draws the public’s attention to the fate of petroleum hydrocarbons in the environment, as they can permeate the soil environment in an uncontrollable manner. Contamination of soils with petroleum products, including diesel oil (DO), can cause changes in the microbiological soil properties. The effect of diesel oil on the functional diversity of fungi was tested in a model experiment during 270 days. Fungi were isolated from soil and identified. The functional diversity of fungal communities was also determined. Fungi were identified with the MALDI-TOF method, while the functional diversity was determined using FF-plates made by Biolog(®), with 95 carbon sources. Moreover, the diesel oil degradation dynamics was assessed. The research showed that soil contaminated with diesel oil is characterized by a higher activity of oxireductases and a higher number of fungi than soil not exposed to the pressure of this product. The DO pollution has an adverse effect on the diversity of fungal community. This is proved by significantly lower values of the Average Well-Color Development, substrates Richness (R) and Shannon–Weaver (H) indices at day 270 after contamination. The consequences of DO affecting soil not submitted to remediation are persistent. After 270 days, only 64% of four-ringed, 28% of five-ringed, 21% of 2–3-ringed and 16% of six-ringed PAHs underwent degradation. The lasting effect of DO on communities of fungi led to a decrease in their functional diversity. The assessment of the response of fungi to DO pollution made on the basis of the development of colonies on Petri dishes [Colony Development (CD) and Eco-physiological Diversity (EP) indices] is consistent with the analysis based on the FF MicroPlate system by Biolog(®). Thus, a combination of the FF MicroPlate system by Biolog(®) with the simultaneous calculation of CD and EP indices alongside the concurrent determination of the content of PAHs and activity of oxireductases provides an opportunity to achieve relatively complete characterization of the consequences of a long-term impact of diesel oil on soil fungi.