Cargando…
Validation of a Machine Learning Approach for Venous Thromboembolism Risk Prediction in Oncology
Using kernel machine learning (ML) and random optimization (RO) techniques, we recently developed a set of venous thromboembolism (VTE) risk predictors, which could be useful to devise a web interface for VTE risk stratification in chemotherapy-treated cancer patients. This study was designed to val...
Autores principales: | Ferroni, Patrizia, Zanzotto, Fabio M., Scarpato, Noemi, Riondino, Silvia, Guadagni, Fiorella, Roselli, Mario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623790/ https://www.ncbi.nlm.nih.gov/pubmed/29104344 http://dx.doi.org/10.1155/2017/8781379 |
Ejemplares similares
-
Breast Cancer Prognosis Using a Machine Learning Approach
por: Ferroni, Patrizia, et al.
Publicado: (2019) -
Predicting VTE in Cancer Patients: Candidate Biomarkers and Risk Assessment Models
por: Riondino, Silvia, et al.
Publicado: (2019) -
Venous Thromboembolism in Cancer Patients on Simultaneous and Palliative Care
por: Riondino, Silvia, et al.
Publicado: (2020) -
Machine learning approach to predict medication overuse in migraine patients
por: Ferroni, Patrizia, et al.
Publicado: (2020) -
Clinical significance of glycemic parameters on venous thromboembolism risk prediction in gastrointestinal cancer
por: Guadagni, Fiorella, et al.
Publicado: (2017)