Cargando…
A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network
We propose a model with two-stage process for abdominal segmentation on CT volumes. First, in order to capture the details of organs, a full convolution-deconvolution network (FCN-DecNet) is constructed with multiple new unpooling, deconvolutional, and fusion layers. Then, we optimize the coarse seg...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623798/ https://www.ncbi.nlm.nih.gov/pubmed/29075646 http://dx.doi.org/10.1155/2017/6941306 |
_version_ | 1783268154506477568 |
---|---|
author | Yang, Yangzi Jiang, Huiyan Sun, Qingjiao |
author_facet | Yang, Yangzi Jiang, Huiyan Sun, Qingjiao |
author_sort | Yang, Yangzi |
collection | PubMed |
description | We propose a model with two-stage process for abdominal segmentation on CT volumes. First, in order to capture the details of organs, a full convolution-deconvolution network (FCN-DecNet) is constructed with multiple new unpooling, deconvolutional, and fusion layers. Then, we optimize the coarse segmentation results of FCN-DecNet by multiscale weights probabilistic atlas (MS-PA), which uses spatial and intensity characteristic of atlases. Our coarse-fine model takes advantage of intersubject variability, spatial location, and gray information of CT volumes to minimize the error of segmentation. Finally, using our model, we extract liver, spleen, and kidney with Dice index of 90.1 ± 1%, 89.0 ± 1.6%, and 89.0 ± 1.3%, respectively. |
format | Online Article Text |
id | pubmed-5623798 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-56237982017-10-26 A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network Yang, Yangzi Jiang, Huiyan Sun, Qingjiao Biomed Res Int Research Article We propose a model with two-stage process for abdominal segmentation on CT volumes. First, in order to capture the details of organs, a full convolution-deconvolution network (FCN-DecNet) is constructed with multiple new unpooling, deconvolutional, and fusion layers. Then, we optimize the coarse segmentation results of FCN-DecNet by multiscale weights probabilistic atlas (MS-PA), which uses spatial and intensity characteristic of atlases. Our coarse-fine model takes advantage of intersubject variability, spatial location, and gray information of CT volumes to minimize the error of segmentation. Finally, using our model, we extract liver, spleen, and kidney with Dice index of 90.1 ± 1%, 89.0 ± 1.6%, and 89.0 ± 1.3%, respectively. Hindawi 2017 2017-09-17 /pmc/articles/PMC5623798/ /pubmed/29075646 http://dx.doi.org/10.1155/2017/6941306 Text en Copyright © 2017 Yangzi Yang et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yang, Yangzi Jiang, Huiyan Sun, Qingjiao A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network |
title | A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network |
title_full | A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network |
title_fullStr | A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network |
title_full_unstemmed | A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network |
title_short | A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network |
title_sort | multiorgan segmentation model for ct volumes via full convolution-deconvolution network |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623798/ https://www.ncbi.nlm.nih.gov/pubmed/29075646 http://dx.doi.org/10.1155/2017/6941306 |
work_keys_str_mv | AT yangyangzi amultiorgansegmentationmodelforctvolumesviafullconvolutiondeconvolutionnetwork AT jianghuiyan amultiorgansegmentationmodelforctvolumesviafullconvolutiondeconvolutionnetwork AT sunqingjiao amultiorgansegmentationmodelforctvolumesviafullconvolutiondeconvolutionnetwork AT yangyangzi multiorgansegmentationmodelforctvolumesviafullconvolutiondeconvolutionnetwork AT jianghuiyan multiorgansegmentationmodelforctvolumesviafullconvolutiondeconvolutionnetwork AT sunqingjiao multiorgansegmentationmodelforctvolumesviafullconvolutiondeconvolutionnetwork |