Cargando…

A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network

We propose a model with two-stage process for abdominal segmentation on CT volumes. First, in order to capture the details of organs, a full convolution-deconvolution network (FCN-DecNet) is constructed with multiple new unpooling, deconvolutional, and fusion layers. Then, we optimize the coarse seg...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yangzi, Jiang, Huiyan, Sun, Qingjiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623798/
https://www.ncbi.nlm.nih.gov/pubmed/29075646
http://dx.doi.org/10.1155/2017/6941306
_version_ 1783268154506477568
author Yang, Yangzi
Jiang, Huiyan
Sun, Qingjiao
author_facet Yang, Yangzi
Jiang, Huiyan
Sun, Qingjiao
author_sort Yang, Yangzi
collection PubMed
description We propose a model with two-stage process for abdominal segmentation on CT volumes. First, in order to capture the details of organs, a full convolution-deconvolution network (FCN-DecNet) is constructed with multiple new unpooling, deconvolutional, and fusion layers. Then, we optimize the coarse segmentation results of FCN-DecNet by multiscale weights probabilistic atlas (MS-PA), which uses spatial and intensity characteristic of atlases. Our coarse-fine model takes advantage of intersubject variability, spatial location, and gray information of CT volumes to minimize the error of segmentation. Finally, using our model, we extract liver, spleen, and kidney with Dice index of 90.1 ± 1%, 89.0 ± 1.6%, and 89.0 ± 1.3%, respectively.
format Online
Article
Text
id pubmed-5623798
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-56237982017-10-26 A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network Yang, Yangzi Jiang, Huiyan Sun, Qingjiao Biomed Res Int Research Article We propose a model with two-stage process for abdominal segmentation on CT volumes. First, in order to capture the details of organs, a full convolution-deconvolution network (FCN-DecNet) is constructed with multiple new unpooling, deconvolutional, and fusion layers. Then, we optimize the coarse segmentation results of FCN-DecNet by multiscale weights probabilistic atlas (MS-PA), which uses spatial and intensity characteristic of atlases. Our coarse-fine model takes advantage of intersubject variability, spatial location, and gray information of CT volumes to minimize the error of segmentation. Finally, using our model, we extract liver, spleen, and kidney with Dice index of 90.1 ± 1%, 89.0 ± 1.6%, and 89.0 ± 1.3%, respectively. Hindawi 2017 2017-09-17 /pmc/articles/PMC5623798/ /pubmed/29075646 http://dx.doi.org/10.1155/2017/6941306 Text en Copyright © 2017 Yangzi Yang et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Yang, Yangzi
Jiang, Huiyan
Sun, Qingjiao
A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network
title A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network
title_full A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network
title_fullStr A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network
title_full_unstemmed A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network
title_short A Multiorgan Segmentation Model for CT Volumes via Full Convolution-Deconvolution Network
title_sort multiorgan segmentation model for ct volumes via full convolution-deconvolution network
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623798/
https://www.ncbi.nlm.nih.gov/pubmed/29075646
http://dx.doi.org/10.1155/2017/6941306
work_keys_str_mv AT yangyangzi amultiorgansegmentationmodelforctvolumesviafullconvolutiondeconvolutionnetwork
AT jianghuiyan amultiorgansegmentationmodelforctvolumesviafullconvolutiondeconvolutionnetwork
AT sunqingjiao amultiorgansegmentationmodelforctvolumesviafullconvolutiondeconvolutionnetwork
AT yangyangzi multiorgansegmentationmodelforctvolumesviafullconvolutiondeconvolutionnetwork
AT jianghuiyan multiorgansegmentationmodelforctvolumesviafullconvolutiondeconvolutionnetwork
AT sunqingjiao multiorgansegmentationmodelforctvolumesviafullconvolutiondeconvolutionnetwork