Cargando…

Effects of Gualou Guizhi Decoction Aqueous Extract on Axonal Regeneration in Organotypic Cortical Slice Culture after Oxygen-Glucose Deprivation

Gualou Guizhi decoction (GLGZD) is effective for the clinical treatment of limb spasms caused by ischemic stroke, but its underlying mechanism is unclear. Propidium iodide (PI) fluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), immunohistoche...

Descripción completa

Detalles Bibliográficos
Autores principales: Nan, Lihong, Yang, Lan, Zheng, Yanfang, He, Yibo, Xie, Qingqing, Chen, Zheming, Li, Huang, Huang, Mei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5624132/
https://www.ncbi.nlm.nih.gov/pubmed/29075304
http://dx.doi.org/10.1155/2017/5170538
Descripción
Sumario:Gualou Guizhi decoction (GLGZD) is effective for the clinical treatment of limb spasms caused by ischemic stroke, but its underlying mechanism is unclear. Propidium iodide (PI) fluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), immunohistochemistry, western blot, and real-time qPCR were used to observe the axonal regeneration and neuroprotective effects of GLGZD aqueous extract on organotypic cortical slices exposed to oxygen-glucose deprivation (OGD) and further elucidate the potential mechanisms. Compared with the OGD group, the GLGZD aqueous extract decreased the red PI fluorescence intensity; inhibited neuronal apoptosis; improved the growth of slice axons; upregulated the protein expression of tau and growth-associated protein-43; and decreased protein and mRNA expression of neurite outgrowth inhibitor protein-A (Nogo-A), Nogo receptor 1 (NgR1), ras homolog gene family A (RhoA), rho-associated coiled-coil-containing protein kinase (ROCK), and phosphorylation of collapsin response mediator protein 2 (CRMP2). Our study found that GLGZD had a strong neuroprotective effect on brain slices after OGD injury. GLGZD plays a vital role in promoting axonal remodeling and functional remodeling, which may be related to regulation of the expression of Nogo-A and its receptor NgR1, near the injured axons, inhibition of the Rho-ROCK pathway, and reduction of CRMP2 phosphorylation.