Cargando…
Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures
While single-cell gene expression experiments present new challenges for data processing, the cell-to-cell variability observed also reveals statistical relationships that can be used by information theory. Here, we use multivariate information theory to explore the statistical dependencies between...
Autores principales: | Chan, Thalia E., Stumpf, Michael P.H., Babtie, Ann C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5624513/ https://www.ncbi.nlm.nih.gov/pubmed/28957658 http://dx.doi.org/10.1016/j.cels.2017.08.014 |
Ejemplares similares
-
Statistical inference of the time-varying structure of gene-regulation networks
por: Lèbre, Sophie, et al.
Publicado: (2010) -
MEANS: python package for Moment Expansion Approximation, iNference and Simulation
por: Fan, Sisi, et al.
Publicado: (2016) -
Gene regulatory network inference using mixed-norms regularized multivariate model with covariance selection
por: Mbebi, Alain J., et al.
Publicado: (2023) -
Stem Cell Differentiation as a Non-Markov Stochastic Process
por: Stumpf, Patrick S., et al.
Publicado: (2017) -
Influence of Statistical Estimators of Mutual Information and Data Heterogeneity on the Inference of Gene Regulatory Networks
por: de Matos Simoes, Ricardo, et al.
Publicado: (2011)