Cargando…
Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics
We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species an...
Autores principales: | Yang, Qian, Sing-Long, Carlos A., Reed, Evan J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5625287/ https://www.ncbi.nlm.nih.gov/pubmed/28989618 http://dx.doi.org/10.1039/c7sc01052d |
Ejemplares similares
-
Monte Carlo methods in AB initio quantum chemistry: quantum Monte Carlo for molecules
por: Lester, William A, et al.
Publicado: (1994) -
A Practical Guide to Surface Kinetic Monte Carlo Simulations
por: Andersen, Mie, et al.
Publicado: (2019) -
Identification of OLED Degradation Scenarios by Kinetic Monte Carlo Simulations of Lifetime Experiments
por: Hauenstein, Christoph, et al.
Publicado: (2022) -
Delocalised kinetic Monte Carlo for simulating delocalisation-enhanced charge and exciton transport in disordered materials
por: Balzer, Daniel, et al.
Publicado: (2020) -
The Kinetic Monte Carlo Method as a Way To Solve the
Master Equation for Interstellar Grain Chemistry
por: Cuppen, H. M., et al.
Publicado: (2013)