Cargando…

Salt-inducible kinases (SIK) inhibition reduces RANKL-induced osteoclastogenesis

Osteoclasts are large multinucleated cells responsible for bone resorption. Excessive inflammatory activation of osteoclasts leads to bony erosions, which are the hallmark of several diseases such as rheumatoid arthritis (RA). Salt-inducible kinases (SIK) constitute a subfamily of kinases comprising...

Descripción completa

Detalles Bibliográficos
Autores principales: Lombardi, Maria Stella, Gilliéron, Corine, Berkelaar, Majoska, Gabay, Cem
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626034/
https://www.ncbi.nlm.nih.gov/pubmed/28973003
http://dx.doi.org/10.1371/journal.pone.0185426
_version_ 1783268475119075328
author Lombardi, Maria Stella
Gilliéron, Corine
Berkelaar, Majoska
Gabay, Cem
author_facet Lombardi, Maria Stella
Gilliéron, Corine
Berkelaar, Majoska
Gabay, Cem
author_sort Lombardi, Maria Stella
collection PubMed
description Osteoclasts are large multinucleated cells responsible for bone resorption. Excessive inflammatory activation of osteoclasts leads to bony erosions, which are the hallmark of several diseases such as rheumatoid arthritis (RA). Salt-inducible kinases (SIK) constitute a subfamily of kinases comprising three members (SIK1, -2, and -3). Inhibition of SIK kinase activity induces an anti-inflammatory phenotype in macrophages. Since osteoclasts originate from precursors of macrophage origin, we hypothesized a role of SIK in osteoclastogenesis. We analyzed SIK1, -2 and -3 expression and function in osteoclast differentiation using the mouse macrophage cell line RAW264.7 and bone marrow-derived macrophages (BMM). We show that all three SIK are expressed in fully differentiated osteoclasts and that in BMM-derived osteoclasts there is an increased expression of SIK1 and SIK3 proteins. Interestingly, the pan-SIK inhibitor HG-9-91-01 significantly inhibited osteoclastogenesis by dose dependently reducing osteoclast differentiation markers (i.e. CathepsinK, MMP-9 and TRAP) and bone resorbing activity. Analysis of the signaling pathways activated by RANKL in RAW cells showed that SIK inhibitors did not affect RANKL-induced ERK1/2, JNK, p38 or NF-κB activation, but induced a significant downregulation in c-Fos and NFATc1 protein levels, the two main transcription factors involved in the regulation of osteoclast-specific genes. Moreover, SIK inhibition partially increased the proteasome-mediated degradation of c-Fos. SIK2 and SIK3 knockout RAW cells were generated by the CRISPR/Cas9 approach. SIK2 KO and, to a lesser extent, SIK3 KO recapitulated the effect of SIK small molecule inhibitor, thus confirming the specificity of the effect of SIK inhibition on the reduction of osteoclastogenesis. Overall, our results support the notion that the SIK signaling pathway plays a significant role among the check-points controlling osteoclastogenesis. SIK kinase inhibitors could thus represent a potential novel therapy to prevent bone erosions.
format Online
Article
Text
id pubmed-5626034
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-56260342017-10-17 Salt-inducible kinases (SIK) inhibition reduces RANKL-induced osteoclastogenesis Lombardi, Maria Stella Gilliéron, Corine Berkelaar, Majoska Gabay, Cem PLoS One Research Article Osteoclasts are large multinucleated cells responsible for bone resorption. Excessive inflammatory activation of osteoclasts leads to bony erosions, which are the hallmark of several diseases such as rheumatoid arthritis (RA). Salt-inducible kinases (SIK) constitute a subfamily of kinases comprising three members (SIK1, -2, and -3). Inhibition of SIK kinase activity induces an anti-inflammatory phenotype in macrophages. Since osteoclasts originate from precursors of macrophage origin, we hypothesized a role of SIK in osteoclastogenesis. We analyzed SIK1, -2 and -3 expression and function in osteoclast differentiation using the mouse macrophage cell line RAW264.7 and bone marrow-derived macrophages (BMM). We show that all three SIK are expressed in fully differentiated osteoclasts and that in BMM-derived osteoclasts there is an increased expression of SIK1 and SIK3 proteins. Interestingly, the pan-SIK inhibitor HG-9-91-01 significantly inhibited osteoclastogenesis by dose dependently reducing osteoclast differentiation markers (i.e. CathepsinK, MMP-9 and TRAP) and bone resorbing activity. Analysis of the signaling pathways activated by RANKL in RAW cells showed that SIK inhibitors did not affect RANKL-induced ERK1/2, JNK, p38 or NF-κB activation, but induced a significant downregulation in c-Fos and NFATc1 protein levels, the two main transcription factors involved in the regulation of osteoclast-specific genes. Moreover, SIK inhibition partially increased the proteasome-mediated degradation of c-Fos. SIK2 and SIK3 knockout RAW cells were generated by the CRISPR/Cas9 approach. SIK2 KO and, to a lesser extent, SIK3 KO recapitulated the effect of SIK small molecule inhibitor, thus confirming the specificity of the effect of SIK inhibition on the reduction of osteoclastogenesis. Overall, our results support the notion that the SIK signaling pathway plays a significant role among the check-points controlling osteoclastogenesis. SIK kinase inhibitors could thus represent a potential novel therapy to prevent bone erosions. Public Library of Science 2017-10-03 /pmc/articles/PMC5626034/ /pubmed/28973003 http://dx.doi.org/10.1371/journal.pone.0185426 Text en © 2017 Lombardi et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Lombardi, Maria Stella
Gilliéron, Corine
Berkelaar, Majoska
Gabay, Cem
Salt-inducible kinases (SIK) inhibition reduces RANKL-induced osteoclastogenesis
title Salt-inducible kinases (SIK) inhibition reduces RANKL-induced osteoclastogenesis
title_full Salt-inducible kinases (SIK) inhibition reduces RANKL-induced osteoclastogenesis
title_fullStr Salt-inducible kinases (SIK) inhibition reduces RANKL-induced osteoclastogenesis
title_full_unstemmed Salt-inducible kinases (SIK) inhibition reduces RANKL-induced osteoclastogenesis
title_short Salt-inducible kinases (SIK) inhibition reduces RANKL-induced osteoclastogenesis
title_sort salt-inducible kinases (sik) inhibition reduces rankl-induced osteoclastogenesis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626034/
https://www.ncbi.nlm.nih.gov/pubmed/28973003
http://dx.doi.org/10.1371/journal.pone.0185426
work_keys_str_mv AT lombardimariastella saltinduciblekinasessikinhibitionreducesranklinducedosteoclastogenesis
AT gillieroncorine saltinduciblekinasessikinhibitionreducesranklinducedosteoclastogenesis
AT berkelaarmajoska saltinduciblekinasessikinhibitionreducesranklinducedosteoclastogenesis
AT gabaycem saltinduciblekinasessikinhibitionreducesranklinducedosteoclastogenesis