Cargando…
ECG data compression using a neural network model based on multi-objective optimization
Electrocardiogram (ECG) data analysis is of great significance to the diagnosis of cardiovascular disease. ECG compression should be processed in real time, and the data should be based on lossless compression and have high predictability. In terms of the real time aspect, short-time Fourier transfo...
Autores principales: | Zhang, Bo, Zhao, Jiasheng, Chen, Xiao, Wu, Jianhuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626036/ https://www.ncbi.nlm.nih.gov/pubmed/28972986 http://dx.doi.org/10.1371/journal.pone.0182500 |
Ejemplares similares
-
Gradient Statistics-Based Multi-Objective Optimization in Physics-Informed Neural Networks
por: Vemuri, Sai Karthikeya, et al.
Publicado: (2023) -
ECG Monitoring Based on Dynamic Compressed Sensing of Multi-Lead Signals
por: Daponte, Pasquale, et al.
Publicado: (2021) -
Genetic algorithm for the optimization of features and neural networks in ECG signals classification
por: Li, Hongqiang, et al.
Publicado: (2017) -
Multi-Channel Fetal ECG Denoising With Deep Convolutional Neural Networks
por: Fotiadou, Eleni, et al.
Publicado: (2020) -
Multi-objective simulated annealing for hyper-parameter optimization in convolutional neural networks
por: Gülcü, Ayla, et al.
Publicado: (2021)