Cargando…
A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci
Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626470/ https://www.ncbi.nlm.nih.gov/pubmed/28972992 http://dx.doi.org/10.1371/journal.pone.0185724 |
_version_ | 1783268551055900672 |
---|---|
author | Ben Abdelkrim, Ahmed Hattab, Tarek Fakhfakh, Hatem Belkadhi, Mohamed Sadok Gorsane, Faten |
author_facet | Ben Abdelkrim, Ahmed Hattab, Tarek Fakhfakh, Hatem Belkadhi, Mohamed Sadok Gorsane, Faten |
author_sort | Ben Abdelkrim, Ahmed |
collection | PubMed |
description | Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest. |
format | Online Article Text |
id | pubmed-5626470 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56264702017-10-17 A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci Ben Abdelkrim, Ahmed Hattab, Tarek Fakhfakh, Hatem Belkadhi, Mohamed Sadok Gorsane, Faten PLoS One Research Article Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest. Public Library of Science 2017-10-03 /pmc/articles/PMC5626470/ /pubmed/28972992 http://dx.doi.org/10.1371/journal.pone.0185724 Text en © 2017 Ben Abdelkrim et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ben Abdelkrim, Ahmed Hattab, Tarek Fakhfakh, Hatem Belkadhi, Mohamed Sadok Gorsane, Faten A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci |
title | A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci |
title_full | A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci |
title_fullStr | A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci |
title_full_unstemmed | A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci |
title_short | A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci |
title_sort | landscape genetic analysis of important agricultural pest species in tunisia: the whitefly bemisia tabaci |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626470/ https://www.ncbi.nlm.nih.gov/pubmed/28972992 http://dx.doi.org/10.1371/journal.pone.0185724 |
work_keys_str_mv | AT benabdelkrimahmed alandscapegeneticanalysisofimportantagriculturalpestspeciesintunisiathewhiteflybemisiatabaci AT hattabtarek alandscapegeneticanalysisofimportantagriculturalpestspeciesintunisiathewhiteflybemisiatabaci AT fakhfakhhatem alandscapegeneticanalysisofimportantagriculturalpestspeciesintunisiathewhiteflybemisiatabaci AT belkadhimohamedsadok alandscapegeneticanalysisofimportantagriculturalpestspeciesintunisiathewhiteflybemisiatabaci AT gorsanefaten alandscapegeneticanalysisofimportantagriculturalpestspeciesintunisiathewhiteflybemisiatabaci AT benabdelkrimahmed landscapegeneticanalysisofimportantagriculturalpestspeciesintunisiathewhiteflybemisiatabaci AT hattabtarek landscapegeneticanalysisofimportantagriculturalpestspeciesintunisiathewhiteflybemisiatabaci AT fakhfakhhatem landscapegeneticanalysisofimportantagriculturalpestspeciesintunisiathewhiteflybemisiatabaci AT belkadhimohamedsadok landscapegeneticanalysisofimportantagriculturalpestspeciesintunisiathewhiteflybemisiatabaci AT gorsanefaten landscapegeneticanalysisofimportantagriculturalpestspeciesintunisiathewhiteflybemisiatabaci |