Cargando…
Signal integration at spherical bushy cells enhances representation of temporal structure but limits its range
Neuronal inhibition is crucial for temporally precise and reproducible signaling in the auditory brainstem. Previously we showed that for various synthetic stimuli, spherical bushy cell (SBC) activity in the Mongolian gerbil is rendered sparser and more reliable by subtractive inhibition (Keine et a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626481/ https://www.ncbi.nlm.nih.gov/pubmed/28945194 http://dx.doi.org/10.7554/eLife.29639 |
_version_ | 1783268553185558528 |
---|---|
author | Keine, Christian Rübsamen, Rudolf Englitz, Bernhard |
author_facet | Keine, Christian Rübsamen, Rudolf Englitz, Bernhard |
author_sort | Keine, Christian |
collection | PubMed |
description | Neuronal inhibition is crucial for temporally precise and reproducible signaling in the auditory brainstem. Previously we showed that for various synthetic stimuli, spherical bushy cell (SBC) activity in the Mongolian gerbil is rendered sparser and more reliable by subtractive inhibition (Keine et al., 2016). Here, employing environmental stimuli, we demonstrate that the inhibitory gain control becomes even more effective, keeping stimulated response rates equal to spontaneous ones. However, what are the costs of this modulation? We performed dynamic stimulus reconstructions based on neural population responses for auditory nerve (ANF) input and SBC output to assess the influence of inhibition on acoustic signal representation. Compared to ANFs, reconstructions of natural stimuli based on SBC responses were temporally more precise, but the match between acoustic and represented signal decreased. Hence, for natural sounds, inhibition at SBCs plays an even stronger role in achieving sparse and reproducible neuronal activity, while compromising general signal representation. |
format | Online Article Text |
id | pubmed-5626481 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-56264812017-10-04 Signal integration at spherical bushy cells enhances representation of temporal structure but limits its range Keine, Christian Rübsamen, Rudolf Englitz, Bernhard eLife Neuroscience Neuronal inhibition is crucial for temporally precise and reproducible signaling in the auditory brainstem. Previously we showed that for various synthetic stimuli, spherical bushy cell (SBC) activity in the Mongolian gerbil is rendered sparser and more reliable by subtractive inhibition (Keine et al., 2016). Here, employing environmental stimuli, we demonstrate that the inhibitory gain control becomes even more effective, keeping stimulated response rates equal to spontaneous ones. However, what are the costs of this modulation? We performed dynamic stimulus reconstructions based on neural population responses for auditory nerve (ANF) input and SBC output to assess the influence of inhibition on acoustic signal representation. Compared to ANFs, reconstructions of natural stimuli based on SBC responses were temporally more precise, but the match between acoustic and represented signal decreased. Hence, for natural sounds, inhibition at SBCs plays an even stronger role in achieving sparse and reproducible neuronal activity, while compromising general signal representation. eLife Sciences Publications, Ltd 2017-09-25 /pmc/articles/PMC5626481/ /pubmed/28945194 http://dx.doi.org/10.7554/eLife.29639 Text en © 2017, Keine et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Keine, Christian Rübsamen, Rudolf Englitz, Bernhard Signal integration at spherical bushy cells enhances representation of temporal structure but limits its range |
title | Signal integration at spherical bushy cells enhances representation of temporal structure but limits its range |
title_full | Signal integration at spherical bushy cells enhances representation of temporal structure but limits its range |
title_fullStr | Signal integration at spherical bushy cells enhances representation of temporal structure but limits its range |
title_full_unstemmed | Signal integration at spherical bushy cells enhances representation of temporal structure but limits its range |
title_short | Signal integration at spherical bushy cells enhances representation of temporal structure but limits its range |
title_sort | signal integration at spherical bushy cells enhances representation of temporal structure but limits its range |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626481/ https://www.ncbi.nlm.nih.gov/pubmed/28945194 http://dx.doi.org/10.7554/eLife.29639 |
work_keys_str_mv | AT keinechristian signalintegrationatsphericalbushycellsenhancesrepresentationoftemporalstructurebutlimitsitsrange AT rubsamenrudolf signalintegrationatsphericalbushycellsenhancesrepresentationoftemporalstructurebutlimitsitsrange AT englitzbernhard signalintegrationatsphericalbushycellsenhancesrepresentationoftemporalstructurebutlimitsitsrange |