Cargando…
A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein
MdmX overexpression contributes to the development of cancer by inhibiting tumor suppressor p53. A switch in the alternative splicing of MdmX transcript, leading to the inclusion of exon 6, has been identified as the primary mechanism responsible for increased MdmX protein levels in human cancers, i...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626491/ https://www.ncbi.nlm.nih.gov/pubmed/28973015 http://dx.doi.org/10.1371/journal.pone.0185801 |
_version_ | 1783268555561631744 |
---|---|
author | Valianatos, Georgios Valcikova, Barbora Growkova, Katerina Verlande, Amandine Mlcochova, Jitka Radova, Lenka Stetkova, Monika Vyhnakova, Michaela Slaby, Ondrej Uldrijan, Stjepan |
author_facet | Valianatos, Georgios Valcikova, Barbora Growkova, Katerina Verlande, Amandine Mlcochova, Jitka Radova, Lenka Stetkova, Monika Vyhnakova, Michaela Slaby, Ondrej Uldrijan, Stjepan |
author_sort | Valianatos, Georgios |
collection | PubMed |
description | MdmX overexpression contributes to the development of cancer by inhibiting tumor suppressor p53. A switch in the alternative splicing of MdmX transcript, leading to the inclusion of exon 6, has been identified as the primary mechanism responsible for increased MdmX protein levels in human cancers, including melanoma. However, there are no approved drugs, which could translate these new findings into clinical applications. We analyzed the anti-melanoma activity of enoxacin, a fluoroquinolone antibiotic inhibiting the growth of some human cancers in vitro and in vivo by promoting miRNA maturation. We found that enoxacin inhibited the growth and viability of human melanoma cell lines much stronger than a structurally related fluoroquinolone ofloxacin, which only weakly modulates miRNA processing. A microarray analysis identified a set of miRNAs significantly dysregulated in enoxacin-treated A375 melanoma cells. They had the potential to target multiple signaling pathways required for cancer cell growth, among them the RNA splicing. Recent studies showed that interfering with cellular splicing machinery can result in MdmX downregulation in cancer cells. We, therefore, hypothesized that enoxacin could, by modulating miRNAs targeting splicing machinery, activate p53 in melanoma cells overexpressing MdmX. We found that enoxacin and ciprofloxacin, a related fluoroquinolone capable of promoting microRNA processing, but not ofloxacin, strongly activated wild type p53-dependent transcription in A375 melanoma without causing significant DNA damage. On the molecular level, the drugs promoted MdmX exon 6 skipping, leading to a dose-dependent downregulation of MdmX. Not only in melanoma, but also in MCF7 breast carcinoma and A2780 ovarian carcinoma cells overexpressing MdmX. Together, our results suggest that some clinically approved fluoroquinolones could potentially be repurposed as activators of p53 tumor suppressor in cancers overexpressing MdmX oncoprotein and that p53 activation might contribute to the previously reported activity of enoxacin towards human cancer cells. |
format | Online Article Text |
id | pubmed-5626491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56264912017-10-17 A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein Valianatos, Georgios Valcikova, Barbora Growkova, Katerina Verlande, Amandine Mlcochova, Jitka Radova, Lenka Stetkova, Monika Vyhnakova, Michaela Slaby, Ondrej Uldrijan, Stjepan PLoS One Research Article MdmX overexpression contributes to the development of cancer by inhibiting tumor suppressor p53. A switch in the alternative splicing of MdmX transcript, leading to the inclusion of exon 6, has been identified as the primary mechanism responsible for increased MdmX protein levels in human cancers, including melanoma. However, there are no approved drugs, which could translate these new findings into clinical applications. We analyzed the anti-melanoma activity of enoxacin, a fluoroquinolone antibiotic inhibiting the growth of some human cancers in vitro and in vivo by promoting miRNA maturation. We found that enoxacin inhibited the growth and viability of human melanoma cell lines much stronger than a structurally related fluoroquinolone ofloxacin, which only weakly modulates miRNA processing. A microarray analysis identified a set of miRNAs significantly dysregulated in enoxacin-treated A375 melanoma cells. They had the potential to target multiple signaling pathways required for cancer cell growth, among them the RNA splicing. Recent studies showed that interfering with cellular splicing machinery can result in MdmX downregulation in cancer cells. We, therefore, hypothesized that enoxacin could, by modulating miRNAs targeting splicing machinery, activate p53 in melanoma cells overexpressing MdmX. We found that enoxacin and ciprofloxacin, a related fluoroquinolone capable of promoting microRNA processing, but not ofloxacin, strongly activated wild type p53-dependent transcription in A375 melanoma without causing significant DNA damage. On the molecular level, the drugs promoted MdmX exon 6 skipping, leading to a dose-dependent downregulation of MdmX. Not only in melanoma, but also in MCF7 breast carcinoma and A2780 ovarian carcinoma cells overexpressing MdmX. Together, our results suggest that some clinically approved fluoroquinolones could potentially be repurposed as activators of p53 tumor suppressor in cancers overexpressing MdmX oncoprotein and that p53 activation might contribute to the previously reported activity of enoxacin towards human cancer cells. Public Library of Science 2017-10-03 /pmc/articles/PMC5626491/ /pubmed/28973015 http://dx.doi.org/10.1371/journal.pone.0185801 Text en © 2017 Valianatos et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Valianatos, Georgios Valcikova, Barbora Growkova, Katerina Verlande, Amandine Mlcochova, Jitka Radova, Lenka Stetkova, Monika Vyhnakova, Michaela Slaby, Ondrej Uldrijan, Stjepan A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein |
title | A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein |
title_full | A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein |
title_fullStr | A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein |
title_full_unstemmed | A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein |
title_short | A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein |
title_sort | small molecule drug promoting mirna processing induces alternative splicing of mdmx transcript and rescues p53 activity in human cancer cells overexpressing mdmx protein |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626491/ https://www.ncbi.nlm.nih.gov/pubmed/28973015 http://dx.doi.org/10.1371/journal.pone.0185801 |
work_keys_str_mv | AT valianatosgeorgios asmallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT valcikovabarbora asmallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT growkovakaterina asmallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT verlandeamandine asmallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT mlcochovajitka asmallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT radovalenka asmallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT stetkovamonika asmallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT vyhnakovamichaela asmallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT slabyondrej asmallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT uldrijanstjepan asmallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT valianatosgeorgios smallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT valcikovabarbora smallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT growkovakaterina smallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT verlandeamandine smallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT mlcochovajitka smallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT radovalenka smallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT stetkovamonika smallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT vyhnakovamichaela smallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT slabyondrej smallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein AT uldrijanstjepan smallmoleculedrugpromotingmirnaprocessinginducesalternativesplicingofmdmxtranscriptandrescuesp53activityinhumancancercellsoverexpressingmdmxprotein |