Cargando…

Intermediate and low abundant protein analysis of vitamin D deficient obese and non-obese subjects by MALDI-profiling

Obesity is a pathological condition caused by genetic and environmental factors, including vitamin D deficiency, which increases the risk of developing cardiovascular disorders and diabetes. This case-control study was designed to verify whether serum profiles could be identified differentiating obe...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Daghri, Nasser M., Torretta, Enrica, Capitanio, Daniele, Fania, Chiara, Guerini, Franca Rosa, Sabico, Shaun B., Clerici, Mario, Gelfi, Cecilia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626753/
https://www.ncbi.nlm.nih.gov/pubmed/28974732
http://dx.doi.org/10.1038/s41598-017-13020-z
Descripción
Sumario:Obesity is a pathological condition caused by genetic and environmental factors, including vitamin D deficiency, which increases the risk of developing cardiovascular disorders and diabetes. This case-control study was designed to verify whether serum profiles could be identified differentiating obese and non-obese Saudis characterized by vitamin D deficiency and pathological levels of triglycerides, high-density lipoprotein cholesterol and high total cholesterol levels. The serum protein profiles of 64 vitamin D deficient (serum 25(OH)D < 50nmol/L) individuals with metabolic syndrome and with (n = 31; BMI ≥ 30) or without (n = 33; BMI < 30) obesity were analyzed by a quantitative label-free mass spectrometry approach (MALDI-profiling), combined with different serum immunodepletion strategies (Human7 and Human14 immuno-chromatographies), to analyze the intermediate- and low-abundant protein components. The analysis of intermediate-abundant proteins (Human7) in obese vs. non-obese subjects identified 14 changed peaks (p < 0.05) in the m/z range 1500–35000. Furthermore, the Human14 depletion provided new profiles related to obesity (121 changed peaks). Among changed peaks, 11 were identified in the m/z range 1500–4000 Da by high-resolution tandem mass spectrometry, belonging to apolipoprotein CIII, apolipoprotein B100, alpha-1-antichymotrypsin and complement C3. Data herein show that distinct protein profiles identify specific peptides belonging to lipid metabolism and inflammation processes that are associated with obesity and vitamin D deficiency.