Cargando…

Characterization of the promoter region of the bovine SIX1 gene: Roles of MyoD, PAX7, CREB and MyoG

The SIX1 gene belongs to the family of six homeodomain transcription factors (TFs), that regulates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and mediate skeletal muscle growth and regeneration. Previous studies have demonstrated that SIX1 is positively correlated with body measu...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Da-wei, Ma, Xue-yao, Zhang, Song-, Hong, Jie-yun, Gui, Lin-sheng, Mei, Chu-gang, Guo, Hong-fang, Wang, Li-, Ning, Yue-, Zan, Lin-sen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626756/
https://www.ncbi.nlm.nih.gov/pubmed/28974698
http://dx.doi.org/10.1038/s41598-017-12787-5
Descripción
Sumario:The SIX1 gene belongs to the family of six homeodomain transcription factors (TFs), that regulates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and mediate skeletal muscle growth and regeneration. Previous studies have demonstrated that SIX1 is positively correlated with body measurement traits (BMTs). However, the transcriptional regulation of SIX1 remains unclear. In the present study, we determined that bovine SIX1 was highly expressed in the longissimus thoracis. To elucidate the molecular mechanisms involved in bovine SIX1 regulation, 2-kb of the 5′ regulatory region were obtained. Sequence analysis identified neither a consensus TATA box nor a CCAAT box in the 5′ flanking region of bovine SIX1. However, a CpG island was predicted in the region −235 to +658 relative to the transcriptional start site (TSS). An electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay in combination with serial deletion constructs of the 5′ flanking region, site-directed mutation and siRNA interference demonstrated that MyoD, PAX7 and CREB binding occur in region −689/−40 and play important roles in bovine SIX1 transcription. In addition, MyoG drives SIX1 transcription indirectly via the MEF3 motif. Taken together these interactions suggest a key functional role for SIX1 in mediating skeletal muscle growth in cattle.