Cargando…

The requirement of Mettl3-promoted MyoD mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation

Myogenic progenitor/stem cells retain their skeletal muscle differentiation potential by maintaining myogenic transcription factors such as MyoD. However, the mechanism of how MyoD expression is maintained in proliferative progenitor cells has not been elucidated. Here, we found that MyoD expression...

Descripción completa

Detalles Bibliográficos
Autores principales: Kudou, Kensuke, Komatsu, Tetsuro, Nogami, Jumpei, Maehara, Kazumitsu, Harada, Akihito, Saeki, Hiroshi, Oki, Eiji, Maehara, Yoshihiko, Ohkawa, Yasuyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627051/
https://www.ncbi.nlm.nih.gov/pubmed/28878038
http://dx.doi.org/10.1098/rsob.170119
Descripción
Sumario:Myogenic progenitor/stem cells retain their skeletal muscle differentiation potential by maintaining myogenic transcription factors such as MyoD. However, the mechanism of how MyoD expression is maintained in proliferative progenitor cells has not been elucidated. Here, we found that MyoD expression was reduced at the mRNA level by cell cycle arrest in S and G2 phases, which in turn led to the absence of skeletal muscle differentiation. The reduction of MyoD mRNA was correlated with the reduced expression of factors regulating RNA metabolism, including methyltransferase like 3 (Mettl3), which induces N(6)-methyladenosine (m(6)A) modifications of RNA. Knockdown of Mettl3 revealed that MyoD RNA was specifically downregulated and that this was caused by a decrease in processed, but not unprocessed, mRNA. Potential m(6)A modification sites were profiled by m(6)A sequencing and identified within the 5′ untranslated region (UTR) of MyoD mRNA. Deletion of the 5′ UTR revealed that it has a role in MyoD mRNA processing. These data showed that Mettl3 is required for MyoD mRNA expression in proliferative myoblasts.