Cargando…
A geometric method for eigenvalue problems with low-rank perturbations
We consider the problem of finding the spectrum of an operator taking the form of a low-rank (rank one or two) non-normal perturbation of a well-understood operator, motivated by a number of problems of applied interest which take this form. We use the fact that the system is a low-rank perturbation...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627089/ https://www.ncbi.nlm.nih.gov/pubmed/28989749 http://dx.doi.org/10.1098/rsos.170390 |
Sumario: | We consider the problem of finding the spectrum of an operator taking the form of a low-rank (rank one or two) non-normal perturbation of a well-understood operator, motivated by a number of problems of applied interest which take this form. We use the fact that the system is a low-rank perturbation of a solved problem, together with a simple idea of classical differential geometry (the envelope of a family of curves) to completely analyse the spectrum. We use these techniques to analyse three problems of this form: a model of the oculomotor integrator due to Anastasio & Gad (2007 J. Comput. Neurosci. 22, 239–254. (doi:10.1007/s10827-006-0010-x)), a continuum integrator model, and a non-local model of phase separation due to Rubinstein & Sternberg (1992 IMA J. Appl. Math. 48, 249–264. (doi:10.1093/imamat/48.3.249)). |
---|