Cargando…
Characterization and Pb(II) removal potential of corn straw- and municipal sludge-derived biochars
Corn straw- and municipal sludge-derived biochars (CS-BC and MS-BC, respectively) were used to remove Pb(II) from aqueous solutions. Despite being pyrolysed at the same temperature (723 K), MS-BC showed higher porosity and hydrophobicity than CS-BC. The optimum biochar loading and pH values allowing...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627091/ https://www.ncbi.nlm.nih.gov/pubmed/28989751 http://dx.doi.org/10.1098/rsos.170402 |
Sumario: | Corn straw- and municipal sludge-derived biochars (CS-BC and MS-BC, respectively) were used to remove Pb(II) from aqueous solutions. Despite being pyrolysed at the same temperature (723 K), MS-BC showed higher porosity and hydrophobicity than CS-BC. The optimum biochar loading and pH values allowing efficient Pb(II) removal (greater than 80%) were 0.2 g l(−1) and 7.0, respectively. The presence of PO(4)(3−) (greater than 0.01 mol l(−1)) significantly affected the adsorptive performance of Pb(II) on the biochar samples. The adsorption data fitted well to a pseudo-second-order kinetic model and a Langmuir model, and the maximum Pb(II) adsorption capacities were 352 and 387 mg g(−1) for CS-BC and MS-BC, respectively. The main mechanisms involved in the adsorption of Pb(II) on biochar were electrostatic attraction and surface complexation. When comparing both biochars, CS-BC showed better cost-effectiveness for the removal of Pb(II) from aqueous solutions. |
---|