Cargando…
Effects of N-Glycan Composition on Structure and Dynamics of IgG1 Fc and Their Implications for Antibody Engineering
Immunoglobulin G1 (IgG1), a subclass of human serum antibodies, is the most widely used scaffold for developing monoclonal antibodies to treat human diseases. The composition of asparagine(N)297-linked glycans can modulate the binding affinity of IgG1 Fc to Fc γ receptors, but it is unclear how the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627252/ https://www.ncbi.nlm.nih.gov/pubmed/28978918 http://dx.doi.org/10.1038/s41598-017-12830-5 |
Sumario: | Immunoglobulin G1 (IgG1), a subclass of human serum antibodies, is the most widely used scaffold for developing monoclonal antibodies to treat human diseases. The composition of asparagine(N)297-linked glycans can modulate the binding affinity of IgG1 Fc to Fc γ receptors, but it is unclear how the structural modifications of N-glycan termini, which are distal from the binding interface, contribute to the affinity. Through atomistic molecular dynamics simulations of a series of sequentially truncated high-mannose IgG1 Fc glycoforms, we found that the C′E loop and the Cγ2-Cγ3 orientation are highly dynamic, and changes in N-glycan composition alter their conformational ensembles. High-mannose glycoform preferentially samples conformations that are more competent to FcγRIIIa binding, compared to the truncated glycoforms, suggesting a role of IgG1 Fc N-glycan in optimizing the interface with the Fc receptor for efficient binding. The trajectory analyses also reveal that the N-glycan has large amplitude motions and the carbohydrate moiety interconverts between Fc-bound and unbound forms, enabling enzymatic modification of the glycan termini. |
---|