Cargando…

Single-cell screening of multiple biophysical properties in leukemia diagnosis from peripheral blood by pure light scattering

Histology and histopathology are based on the morphometric observations of quiescent cells. Their diagnostic potential could largely benefit from a simultaneous screening of intrinsic biophysical properties at single-cell level. For such a purpose, we analyzed light scattering signatures of individu...

Descripción completa

Detalles Bibliográficos
Autores principales: Dannhauser, David, Rossi, Domenico, Ripaldi, Mimmo, Netti, Paolo A., Causa, Filippo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627307/
https://www.ncbi.nlm.nih.gov/pubmed/28979002
http://dx.doi.org/10.1038/s41598-017-12990-4
Descripción
Sumario:Histology and histopathology are based on the morphometric observations of quiescent cells. Their diagnostic potential could largely benefit from a simultaneous screening of intrinsic biophysical properties at single-cell level. For such a purpose, we analyzed light scattering signatures of individual mononuclear blood cells in microfluidic flow. In particular, we extracted a set of biophysical properties including morphometric (dimension, shape and nucleus-to-cytosol ratio) and optical (optical density) ones to clearly discriminate different cell types and stages. By considering distinctive ranges of biophysical properties along with the obtained relative cell frequencies, we can identify unique cell classes corresponding to specific clinical conditions (p < 0.01). Based on such a straightforward approach, we are able to discriminate T-, B-lymphocytes, monocytes and beyond that first results on different stages of lymphoid and myeloid leukemia cells are presented. This work shows that the simultaneous screening of only three biophysical properties enables a clear distinction between pathological and physiological mononuclear blood stream cells. We believe our approach could represent a useful tool for a label-free analysis of biophysical single-cell signatures.