Cargando…
MetaGen: reference-free learning with multiple metagenomic samples
A major goal of metagenomics is to identify and study the entire collection of microbial species in a set of targeted samples. We describe a statistical metagenomic algorithm that simultaneously identifies microbial species and estimates their abundances without using reference genomes. As a trade-o...
Autores principales: | Xing, Xin, Liu, Jun S., Zhong, Wenxuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627425/ https://www.ncbi.nlm.nih.gov/pubmed/28974263 http://dx.doi.org/10.1186/s13059-017-1323-y |
Ejemplares similares
-
The MetaGens algorithm for metagenomic database lossy compression and subject alignment
por: Cervi, Gustavo Henrique, et al.
Publicado: (2023) -
metaMIC: reference-free misassembly identification and correction of de novo metagenomic assemblies
por: Lai, Senying, et al.
Publicado: (2022) -
The Nubeam reference-free approach to analyze metagenomic sequencing reads
por: Dai, Hang, et al.
Publicado: (2020) -
Minerva: an alignment- and reference-free approach to deconvolve Linked-Reads for metagenomics
por: Danko, David C., et al.
Publicado: (2019) -
Prediction of effective genome size in metagenomic samples
por: Raes, Jeroen, et al.
Publicado: (2007)