Cargando…

Evaluation of a C57BL/6J x 129S1/SvImJ Hybrid Nestin-Thymidine Kinase Transgenic Mouse Model for Studying the Functional Significance of Exercise-Induced Adult Hippocampal Neurogenesis

New neurons are continuously generated in the adult hippocampus but their function remains a mystery. The nestin thymidine kinase (nestin-TK) transgenic method has been used for selective and conditional reduction of neurogenesis for the purpose of testing the functional significance of new neurons...

Descripción completa

Detalles Bibliográficos
Autores principales: Hamilton, G.F., Majdak, P., Miller, D.S., Bucko, P.J., Merritt, J.R., Krebs, C.P., Rhodes, J.S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627510/
https://www.ncbi.nlm.nih.gov/pubmed/28989863
http://dx.doi.org/10.3233/BPL-150011
_version_ 1783268732541337600
author Hamilton, G.F.
Majdak, P.
Miller, D.S.
Bucko, P.J.
Merritt, J.R.
Krebs, C.P.
Rhodes, J.S.
author_facet Hamilton, G.F.
Majdak, P.
Miller, D.S.
Bucko, P.J.
Merritt, J.R.
Krebs, C.P.
Rhodes, J.S.
author_sort Hamilton, G.F.
collection PubMed
description New neurons are continuously generated in the adult hippocampus but their function remains a mystery. The nestin thymidine kinase (nestin-TK) transgenic method has been used for selective and conditional reduction of neurogenesis for the purpose of testing the functional significance of new neurons in learning, memory and motor performance. Here we explored the nestin-TK model on a hybrid genetic background (to increase heterozygosity, and “hybrid vigor”). Transgenic C57BL/6J (B6) were crossed with 129S1/SvImJ (129) producing hybrid offspring (F1) with the B6 half of the genome carrying a herpes simplex virus thymidine kinase (TK) transgene regulated by a modified nestin promoter. In the presence of exogenously administered valganciclovir, new neurons expressing TK undergo apoptosis. Female B6 nestin-TK mice (n = 80) were evaluated for neurogenesis reduction as a positive control. Male and female F1 nestin-TK mice (n = 223) were used to determine the impact of neurogenesis reduction on the Morris water maze (MWM) and rotarod. All mice received BrdU injections to label dividing cells and either valganciclovir or control chow, with or without a running wheel for 30 days. Both the F1 and B6 background displayed approximately 50% reduction in neurogenesis, a difference that did not impair learning and memory on the MWM or rotarod performance. Running enhanced neurogenesis and performance on the rotarod but not MWM suggesting the F1 background may not be suitable for studying pro-cognitive effects of exercise on MWM. Greater reduction of neurogenesis may be required to observe behavioral impacts. Alternatively, new neurons may not play a critical role in learning, or compensatory mechanisms in pre-existing neurons could have masked the deficits. Further work using these and other models for selectively reducing neurogenesis are needed to establish the functional significance of adult hippocampal neurogenesis in behavior.
format Online
Article
Text
id pubmed-5627510
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher IOS Press
record_format MEDLINE/PubMed
spelling pubmed-56275102017-10-04 Evaluation of a C57BL/6J x 129S1/SvImJ Hybrid Nestin-Thymidine Kinase Transgenic Mouse Model for Studying the Functional Significance of Exercise-Induced Adult Hippocampal Neurogenesis Hamilton, G.F. Majdak, P. Miller, D.S. Bucko, P.J. Merritt, J.R. Krebs, C.P. Rhodes, J.S. Brain Plast Review New neurons are continuously generated in the adult hippocampus but their function remains a mystery. The nestin thymidine kinase (nestin-TK) transgenic method has been used for selective and conditional reduction of neurogenesis for the purpose of testing the functional significance of new neurons in learning, memory and motor performance. Here we explored the nestin-TK model on a hybrid genetic background (to increase heterozygosity, and “hybrid vigor”). Transgenic C57BL/6J (B6) were crossed with 129S1/SvImJ (129) producing hybrid offspring (F1) with the B6 half of the genome carrying a herpes simplex virus thymidine kinase (TK) transgene regulated by a modified nestin promoter. In the presence of exogenously administered valganciclovir, new neurons expressing TK undergo apoptosis. Female B6 nestin-TK mice (n = 80) were evaluated for neurogenesis reduction as a positive control. Male and female F1 nestin-TK mice (n = 223) were used to determine the impact of neurogenesis reduction on the Morris water maze (MWM) and rotarod. All mice received BrdU injections to label dividing cells and either valganciclovir or control chow, with or without a running wheel for 30 days. Both the F1 and B6 background displayed approximately 50% reduction in neurogenesis, a difference that did not impair learning and memory on the MWM or rotarod performance. Running enhanced neurogenesis and performance on the rotarod but not MWM suggesting the F1 background may not be suitable for studying pro-cognitive effects of exercise on MWM. Greater reduction of neurogenesis may be required to observe behavioral impacts. Alternatively, new neurons may not play a critical role in learning, or compensatory mechanisms in pre-existing neurons could have masked the deficits. Further work using these and other models for selectively reducing neurogenesis are needed to establish the functional significance of adult hippocampal neurogenesis in behavior. IOS Press 2015-10-09 /pmc/articles/PMC5627510/ /pubmed/28989863 http://dx.doi.org/10.3233/BPL-150011 Text en © 2015 ― IOS Press and the authors. All rights reserved This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License.
spellingShingle Review
Hamilton, G.F.
Majdak, P.
Miller, D.S.
Bucko, P.J.
Merritt, J.R.
Krebs, C.P.
Rhodes, J.S.
Evaluation of a C57BL/6J x 129S1/SvImJ Hybrid Nestin-Thymidine Kinase Transgenic Mouse Model for Studying the Functional Significance of Exercise-Induced Adult Hippocampal Neurogenesis
title Evaluation of a C57BL/6J x 129S1/SvImJ Hybrid Nestin-Thymidine Kinase Transgenic Mouse Model for Studying the Functional Significance of Exercise-Induced Adult Hippocampal Neurogenesis
title_full Evaluation of a C57BL/6J x 129S1/SvImJ Hybrid Nestin-Thymidine Kinase Transgenic Mouse Model for Studying the Functional Significance of Exercise-Induced Adult Hippocampal Neurogenesis
title_fullStr Evaluation of a C57BL/6J x 129S1/SvImJ Hybrid Nestin-Thymidine Kinase Transgenic Mouse Model for Studying the Functional Significance of Exercise-Induced Adult Hippocampal Neurogenesis
title_full_unstemmed Evaluation of a C57BL/6J x 129S1/SvImJ Hybrid Nestin-Thymidine Kinase Transgenic Mouse Model for Studying the Functional Significance of Exercise-Induced Adult Hippocampal Neurogenesis
title_short Evaluation of a C57BL/6J x 129S1/SvImJ Hybrid Nestin-Thymidine Kinase Transgenic Mouse Model for Studying the Functional Significance of Exercise-Induced Adult Hippocampal Neurogenesis
title_sort evaluation of a c57bl/6j x 129s1/svimj hybrid nestin-thymidine kinase transgenic mouse model for studying the functional significance of exercise-induced adult hippocampal neurogenesis
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627510/
https://www.ncbi.nlm.nih.gov/pubmed/28989863
http://dx.doi.org/10.3233/BPL-150011
work_keys_str_mv AT hamiltongf evaluationofac57bl6jx129s1svimjhybridnestinthymidinekinasetransgenicmousemodelforstudyingthefunctionalsignificanceofexerciseinducedadulthippocampalneurogenesis
AT majdakp evaluationofac57bl6jx129s1svimjhybridnestinthymidinekinasetransgenicmousemodelforstudyingthefunctionalsignificanceofexerciseinducedadulthippocampalneurogenesis
AT millerds evaluationofac57bl6jx129s1svimjhybridnestinthymidinekinasetransgenicmousemodelforstudyingthefunctionalsignificanceofexerciseinducedadulthippocampalneurogenesis
AT buckopj evaluationofac57bl6jx129s1svimjhybridnestinthymidinekinasetransgenicmousemodelforstudyingthefunctionalsignificanceofexerciseinducedadulthippocampalneurogenesis
AT merrittjr evaluationofac57bl6jx129s1svimjhybridnestinthymidinekinasetransgenicmousemodelforstudyingthefunctionalsignificanceofexerciseinducedadulthippocampalneurogenesis
AT krebscp evaluationofac57bl6jx129s1svimjhybridnestinthymidinekinasetransgenicmousemodelforstudyingthefunctionalsignificanceofexerciseinducedadulthippocampalneurogenesis
AT rhodesjs evaluationofac57bl6jx129s1svimjhybridnestinthymidinekinasetransgenicmousemodelforstudyingthefunctionalsignificanceofexerciseinducedadulthippocampalneurogenesis