Cargando…

Real-time assessment of corneal endothelial cell damage following graft preparation and donor insertion for DMEK

PURPOSE: To establish a method for assessing graft viability, in-vivo, following corneal transplantation. METHODS: Optimization of calcein AM fluorescence and toxicity assessment was performed in cultured human corneal endothelial cells and ex-vivo corneal tissue. Descemet membrane endothelial kerat...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhogal, Maninder, Lwin, Chan N., Seah, Xin-Yi, Murugan, Elavazhagan, Adnan, Khadijah, Lin, Shu-Jun, Peh, Gary, Mehta, Jodhbir S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627903/
https://www.ncbi.nlm.nih.gov/pubmed/28977017
http://dx.doi.org/10.1371/journal.pone.0184824
Descripción
Sumario:PURPOSE: To establish a method for assessing graft viability, in-vivo, following corneal transplantation. METHODS: Optimization of calcein AM fluorescence and toxicity assessment was performed in cultured human corneal endothelial cells and ex-vivo corneal tissue. Descemet membrane endothelial keratoplasty grafts were incubated with calcein AM and imaged pre and post preparation, and in-situ after insertion and unfolding in a pig eye model. Global, macroscopic images of the entire graft and individual cell resolution could be attained by altering the magnification of a clinical confocal scanning laser microscope. Patterns of cell loss observed in situ were compared to those seen using standard ex-vivo techniques. RESULTS: Calcein AM showed a positive dose-fluorescence relationship. A dose of 2.67μmol was sufficient to allow clear discrimination between viable and non-viable areas (sensitivity of 96.6% with a specificity of 96.1%) and was not toxic to cultured endothelial cells or ex-vivo corneal tissue. Patterns of cell loss seen in-situ closely matched those seen on ex-vivo assessment with fluorescence viability imaging, trypan blue/alizarin red staining or scanning electron microscopy. Iatrogenic graft damage from preparation and insertion varied between 7–35% and incarceration of the graft tissue within surgical wounds was identified as a significant cause of endothelial damage. CONCLUSIONS: In-situ graft viability assessment using clinical imaging devices provides comparable information to ex-vivo methods. This method shows high sensitivity and specificity, is non-toxic and can be used to evaluate immediate cell viability in new grafting techniques in-vivo.