Cargando…
Genetic determinants of serum 25-hydroxyvitamin D concentration during pregnancy and type 1 diabetes in the child
OBJECTIVE: The in utero environment plays an important role in shaping development and later life health of the fetus. It has been shown that maternal genetic factors in the metabolic pathway of vitamin D associate with type 1 diabetes in the child. In this study we analyzed the genetic determinants...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627909/ https://www.ncbi.nlm.nih.gov/pubmed/28976992 http://dx.doi.org/10.1371/journal.pone.0184942 |
_version_ | 1783268795660369920 |
---|---|
author | Miettinen, Maija E. Smart, Melissa C. Kinnunen, Leena Harjutsalo, Valma Reinert-Hartwall, Linnea Ylivinkka, Irene Surcel, Heljä-Marja Lamberg-Allardt, Christel Hitman, Graham A. Tuomilehto, Jaakko |
author_facet | Miettinen, Maija E. Smart, Melissa C. Kinnunen, Leena Harjutsalo, Valma Reinert-Hartwall, Linnea Ylivinkka, Irene Surcel, Heljä-Marja Lamberg-Allardt, Christel Hitman, Graham A. Tuomilehto, Jaakko |
author_sort | Miettinen, Maija E. |
collection | PubMed |
description | OBJECTIVE: The in utero environment plays an important role in shaping development and later life health of the fetus. It has been shown that maternal genetic factors in the metabolic pathway of vitamin D associate with type 1 diabetes in the child. In this study we analyzed the genetic determinants of serum 25-hydroxyvitamin D (25OHD) concentration during pregnancy in mothers whose children later developed type 1 diabetes and in control mothers. STUDY DESIGN: 474 mothers of type 1 diabetic children and 348 mothers of non-diabetic children were included in the study. We previously selected 7 single nucleotide polymorphisms (SNPs) in four genes in the metabolic pathway of vitamin D vitamin based on our previously published data demonstrating an association between genotype and serum 25OHD concentration. In this re-analysis, possible differences in strength in the association between the SNPs and serum 25OHD concentration in mothers of type 1 diabetic and non-diabetic children were investigated. Serum 25OHD concentrations were previously shown to be similar between the mothers of type 1 diabetic and non-diabetic children and vitamin D deficiency prevalent in both groups. RESULTS: Associations between serum 25OHD concentration and 2 SNPs, one in the vitamin D receptor (VDR) gene (rs4516035) and one in the group-specific component (GC) gene (rs12512631), were stronger during pregnancy in mothers whose children later developed type 1 diabetes than in mothers whose children did not (p(interaction) = 0.03, 0.02, respectively). CONCLUSIONS: We show for the first time that there are differences in the strength of genetic determinants of serum 25OHD concentration during pregnancy between the mothers of type 1 diabetic and non-diabetic children. Our results emphasize that the in utero environment including maternal vitamin D metabolism should be important lines of investigation when searching for factors that lead to early programming of type 1 diabetes. |
format | Online Article Text |
id | pubmed-5627909 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56279092017-10-20 Genetic determinants of serum 25-hydroxyvitamin D concentration during pregnancy and type 1 diabetes in the child Miettinen, Maija E. Smart, Melissa C. Kinnunen, Leena Harjutsalo, Valma Reinert-Hartwall, Linnea Ylivinkka, Irene Surcel, Heljä-Marja Lamberg-Allardt, Christel Hitman, Graham A. Tuomilehto, Jaakko PLoS One Research Article OBJECTIVE: The in utero environment plays an important role in shaping development and later life health of the fetus. It has been shown that maternal genetic factors in the metabolic pathway of vitamin D associate with type 1 diabetes in the child. In this study we analyzed the genetic determinants of serum 25-hydroxyvitamin D (25OHD) concentration during pregnancy in mothers whose children later developed type 1 diabetes and in control mothers. STUDY DESIGN: 474 mothers of type 1 diabetic children and 348 mothers of non-diabetic children were included in the study. We previously selected 7 single nucleotide polymorphisms (SNPs) in four genes in the metabolic pathway of vitamin D vitamin based on our previously published data demonstrating an association between genotype and serum 25OHD concentration. In this re-analysis, possible differences in strength in the association between the SNPs and serum 25OHD concentration in mothers of type 1 diabetic and non-diabetic children were investigated. Serum 25OHD concentrations were previously shown to be similar between the mothers of type 1 diabetic and non-diabetic children and vitamin D deficiency prevalent in both groups. RESULTS: Associations between serum 25OHD concentration and 2 SNPs, one in the vitamin D receptor (VDR) gene (rs4516035) and one in the group-specific component (GC) gene (rs12512631), were stronger during pregnancy in mothers whose children later developed type 1 diabetes than in mothers whose children did not (p(interaction) = 0.03, 0.02, respectively). CONCLUSIONS: We show for the first time that there are differences in the strength of genetic determinants of serum 25OHD concentration during pregnancy between the mothers of type 1 diabetic and non-diabetic children. Our results emphasize that the in utero environment including maternal vitamin D metabolism should be important lines of investigation when searching for factors that lead to early programming of type 1 diabetes. Public Library of Science 2017-10-04 /pmc/articles/PMC5627909/ /pubmed/28976992 http://dx.doi.org/10.1371/journal.pone.0184942 Text en © 2017 Miettinen et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Miettinen, Maija E. Smart, Melissa C. Kinnunen, Leena Harjutsalo, Valma Reinert-Hartwall, Linnea Ylivinkka, Irene Surcel, Heljä-Marja Lamberg-Allardt, Christel Hitman, Graham A. Tuomilehto, Jaakko Genetic determinants of serum 25-hydroxyvitamin D concentration during pregnancy and type 1 diabetes in the child |
title | Genetic determinants of serum 25-hydroxyvitamin D concentration during pregnancy and type 1 diabetes in the child |
title_full | Genetic determinants of serum 25-hydroxyvitamin D concentration during pregnancy and type 1 diabetes in the child |
title_fullStr | Genetic determinants of serum 25-hydroxyvitamin D concentration during pregnancy and type 1 diabetes in the child |
title_full_unstemmed | Genetic determinants of serum 25-hydroxyvitamin D concentration during pregnancy and type 1 diabetes in the child |
title_short | Genetic determinants of serum 25-hydroxyvitamin D concentration during pregnancy and type 1 diabetes in the child |
title_sort | genetic determinants of serum 25-hydroxyvitamin d concentration during pregnancy and type 1 diabetes in the child |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627909/ https://www.ncbi.nlm.nih.gov/pubmed/28976992 http://dx.doi.org/10.1371/journal.pone.0184942 |
work_keys_str_mv | AT miettinenmaijae geneticdeterminantsofserum25hydroxyvitamindconcentrationduringpregnancyandtype1diabetesinthechild AT smartmelissac geneticdeterminantsofserum25hydroxyvitamindconcentrationduringpregnancyandtype1diabetesinthechild AT kinnunenleena geneticdeterminantsofserum25hydroxyvitamindconcentrationduringpregnancyandtype1diabetesinthechild AT harjutsalovalma geneticdeterminantsofserum25hydroxyvitamindconcentrationduringpregnancyandtype1diabetesinthechild AT reinerthartwalllinnea geneticdeterminantsofserum25hydroxyvitamindconcentrationduringpregnancyandtype1diabetesinthechild AT ylivinkkairene geneticdeterminantsofserum25hydroxyvitamindconcentrationduringpregnancyandtype1diabetesinthechild AT surcelheljamarja geneticdeterminantsofserum25hydroxyvitamindconcentrationduringpregnancyandtype1diabetesinthechild AT lambergallardtchristel geneticdeterminantsofserum25hydroxyvitamindconcentrationduringpregnancyandtype1diabetesinthechild AT hitmangrahama geneticdeterminantsofserum25hydroxyvitamindconcentrationduringpregnancyandtype1diabetesinthechild AT tuomilehtojaakko geneticdeterminantsofserum25hydroxyvitamindconcentrationduringpregnancyandtype1diabetesinthechild |