Cargando…

Genetic Regulation of GA Metabolism during Vernalization, Floral Bud Initiation and Development in Pak Choi (Brassica rapa ssp. chinensis Makino)

Pak choi (Brassica rapa ssp. chinensis Makino) is a representative seed vernalization vegetable and premature bolting in spring can cause significant economic loss. Thus, it is critical to elucidate the mechanism of molecular regulation of vernalization and floral bud initiation to prevent premature...

Descripción completa

Detalles Bibliográficos
Autores principales: Shang, Mengya, Wang, Xueting, Zhang, Jing, Qi, Xianhui, Ping, Amin, Hou, Leiping, Xing, Guoming, Li, Gaizhen, Li, Meilan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628244/
https://www.ncbi.nlm.nih.gov/pubmed/29038660
http://dx.doi.org/10.3389/fpls.2017.01533
Descripción
Sumario:Pak choi (Brassica rapa ssp. chinensis Makino) is a representative seed vernalization vegetable and premature bolting in spring can cause significant economic loss. Thus, it is critical to elucidate the mechanism of molecular regulation of vernalization and floral bud initiation to prevent premature bolting. Gibberellin (GA) is the key plant hormone involved in regulating plant development. To gain a better understanding of GA metabolism in pak choi, the content of GA in pak choi was measured at different stages of plant development using enzyme-linked immunosorbent assay. The results showed that the GA content increased significantly after low-temperature treatment (4°C) and then decreased rapidly with vegetative growth. During floral bud initiation, the GA content increased rapidly until it peaked upon floral bud differentiation. To elucidate these changes in GA content, the expression of homologous genes encoding enzymes directly involved in GA metabolism were analyzed. The results showed that the changes in the expression of four genes involved in GA synthesis (Bra035120 encoding ent-kaurene synthase, Bra009868 encoding ent-kaurene oxidase, Bra015394 encoding ent-kaurenoic acid oxidase, and Bra013890 encoding GA20-oxidase) were correlated with the changes in GA content. In addition, by comparing the expression of genes involved in GA metabolism at different growth stages, seven differentially expressed genes (Bra005596, Bra009285, Bra022565, Bra008362, Bra033324, Bra010802, and Bra030500) were identified. The differential expression of these genes were directly correlated with changes in GA content, suggesting that these genes were directly related to vernalization, floral bud initiation and development. These results contribute to the understanding of the molecular mechanism of changes in GA content during different developmental phases in pak choi.