Cargando…

Efficient syntheses of (–)-crinine and (–)-aspidospermidine, and the formal synthesis of (–)-minfiensine by enantioselective intramolecular dearomative cyclization

Polycyclic alkaloids bearing all-carbon quaternary centers possess a diversity of biological activities and are challenging targets in natural product synthesis. The development of a general and asymmetric catalytic method applicable to the efficient syntheses of a series of complex polycyclic alkal...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Kang, Yang, He, Guo, Pan, Feng, Liang, Xu, Guangqing, Zhou, Qinghai, Chung, Lung Wa, Tang, Wenjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628388/
https://www.ncbi.nlm.nih.gov/pubmed/28989658
http://dx.doi.org/10.1039/c7sc01859b
Descripción
Sumario:Polycyclic alkaloids bearing all-carbon quaternary centers possess a diversity of biological activities and are challenging targets in natural product synthesis. The development of a general and asymmetric catalytic method applicable to the efficient syntheses of a series of complex polycyclic alkaloids remains highly desirable in synthetic chemistry. Herein we describe an efficient palladium-catalyzed enantioselective dearomative cyclization which is capable of synthesizing two important classes of tricyclic nitrogen-containing skeleton, chiral dihydrophenanthridinone and dihydrocarbazolone derivatives bearing all-carbon quaternary centers, in excellent yields and enantioselectivities. The P-chiral monophosphorus ligand AntPhos is crucial for the reactivity and enantioselectivity, and the choice of the N-phosphoramide protecting group is essential for the desired chemoselectivity. This method has enabled the enantioselective total syntheses of three distinctive and challenging biologically important polycyclic alkaloids, specifically a concise and gram-scale synthesis of (–)-crinine, an efficient synthesis of indole alkaloid (–)-aspidospermidine and a formal enantioselective synthesis of (–)-minfiensine.