Cargando…

Dual EGFR and BRAF blockade overcomes resistance to vemurafenib in BRAF mutated thyroid carcinoma cells

BACKGROUND: BRAF inhibitors are effective anticancer agents in BRAF-mutated melanomas. By contrast, evidences about sensitivity of thyroid carcinomas to BRAF inhibition are conflicting and it has been proposed that BRAF V600E thyroid carcinoma cells are less sensitive to BRAF inhibitors due to activ...

Descripción completa

Detalles Bibliográficos
Autores principales: Notarangelo, Tiziana, Sisinni, Lorenza, Condelli, Valentina, Landriscina, Matteo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628448/
https://www.ncbi.nlm.nih.gov/pubmed/29033690
http://dx.doi.org/10.1186/s12935-017-0457-z
Descripción
Sumario:BACKGROUND: BRAF inhibitors are effective anticancer agents in BRAF-mutated melanomas. By contrast, evidences about sensitivity of thyroid carcinomas to BRAF inhibition are conflicting and it has been proposed that BRAF V600E thyroid carcinoma cells are less sensitive to BRAF inhibitors due to activation of parallel signaling pathways. This study evaluated the hypothesis that feedback activation of EGFR signaling counteracts the cytostatic activity of vemurafenib (PLX4032) in BRAF V600E thyroid carcinoma cells. METHODS: Cell proliferation, cell cycle distribution, induction of apoptosis and EGFR and AKT signaling were evaluated in thyroid carcinoma cell lines bearing the BRAF V600E mutation in response to PLX4032. RESULTS: A partial and transient cytostatic response to PLX4032 was observed in thyroid carcinoma cell lines bearing the BRAF V600E mutation, with lack of full inhibition of ERK pathway. Interestingly, the exposure of thyroid carcinoma cells to PLX4032 resulted in a rapid feedback activation of EGFR signaling with parallel activation of AKT phosphorylation. Consistently, the dual inhibition of EGFR and BRAF, through combination therapy with PLX4032 and gefitinib, resulted in prevention of EGFR phosphorylation and sustained inhibition of ERK and AKT signaling and cell proliferation. Of note, the combined treatment with gefitinib and vemurafenib or the exposure of EGFR-silenced thyroid carcinoma cells to vemurafenib induced synthetic lethality compared to single agents. CONCLUSIONS: These data suggest that the dual EGFR and BRAF blockade represents a strategy to by-pass resistance to BRAF inhibitors in thyroid carcinoma cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12935-017-0457-z) contains supplementary material, which is available to authorized users.