Cargando…
Material discovery by combining stochastic surface walking global optimization with a neural network
While the underlying potential energy surface (PES) determines the structure and other properties of a material, it has been frustrating to predict new materials from theory even with the advent of supercomputing facilities. The accuracy of the PES and the efficiency of PES sampling are two major bo...
Autores principales: | Huang, Si-Da, Shang, Cheng, Zhang, Xiao-Jie, Liu, Zhi-Pan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628601/ https://www.ncbi.nlm.nih.gov/pubmed/29308174 http://dx.doi.org/10.1039/c7sc01459g |
Ejemplares similares
-
Strategic sampling with stochastic surface walking for machine learning force fields in iron's bcc–hcp phase transitions
por: Wang, Fang, et al.
Publicado: (2023) -
Atomic structure of boron resolved using machine learning and global sampling
por: Huang, Si-Da, et al.
Publicado: (2018) -
Thermodynamic rules for zeolite formation from machine learning based global optimization
por: Ma, Sicong, et al.
Publicado: (2020) -
Stochastic and global optimization
por: Dzemyda, Gintautas, et al.
Publicado: (2002) -
Stochastic global optimization
por: Zhigljavsky, Anatoly A, et al.
Publicado: (2007)