Cargando…
Density-dependent signaling: An alternative hypothesis on the function of chemical signaling in a non-territorial solitary carnivore
Brown bears are known to use rubbing behavior as a means of chemical communication, but the function of this signaling is unclear. One hypothesis that has gained support is that male bears rub to communicate dominance to other males. We tested the communication of dominance hypothesis in a low-densi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628802/ https://www.ncbi.nlm.nih.gov/pubmed/28981540 http://dx.doi.org/10.1371/journal.pone.0184176 |
Sumario: | Brown bears are known to use rubbing behavior as a means of chemical communication, but the function of this signaling is unclear. One hypothesis that has gained support is that male bears rub to communicate dominance to other males. We tested the communication of dominance hypothesis in a low-density brown bear population in southeast British Columbia. We contrasted rubbing rates for male and female bears during and after the breeding season using ten years of DNA-mark-recapture data for 643 individuals. Here we demonstrate that male brown bears rub 60% more during the breeding than the non-breeding season, while female rubbing had no seasonal trends. Per capita rub rates by males were, on average, 2.7 times higher than females. Our results suggest that the function of rubbing in the Rocky Mountains may not only be to communicate dominance, but also to self-advertise for mate attraction. We propose that the role of chemical communication in this species may be density-dependent, where the need to self-advertise for mating is inversely related to population density and communicating for dominance increases with population density. We suggest that future endeavors to elucidate the function of rubbing should sample the behavior across a range of population densities using camera trap and genotypic data. |
---|