Cargando…
Predicting Causal Relationships from Biological Data: Applying Automated Causal Discovery on Mass Cytometry Data of Human Immune Cells
Learning the causal relationships that define a molecular system allows us to predict how the system will respond to different interventions. Distinguishing causality from mere association typically requires randomized experiments. Methods for automated causal discovery from limited experiments exi...
Autores principales: | Triantafillou, Sofia, Lagani, Vincenzo, Heinze-Deml, Christina, Schmidt, Angelika, Tegner, Jesper, Tsamardinos, Ioannis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5629212/ https://www.ncbi.nlm.nih.gov/pubmed/28983114 http://dx.doi.org/10.1038/s41598-017-08582-x |
Ejemplares similares
-
SCENERY: a web application for (causal) network reconstruction from cytometry data
por: Papoutsoglou, Georgios, et al.
Publicado: (2017) -
Constraint-based causal discovery with mixed data
por: Tsagris, Michail, et al.
Publicado: (2018) -
Challenges in the Multivariate Analysis of Mass Cytometry Data: The Effect of Randomization
por: Papoutsoglou, Georgios, et al.
Publicado: (2019) -
omicsNPC: Applying the Non-Parametric Combination Methodology to the Integrative Analysis of Heterogeneous Omics Data
por: Karathanasis, Nestoras, et al.
Publicado: (2016) -
An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems
por: Zenil, Hector, et al.
Publicado: (2019)