Cargando…
Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma
BACKGROUND: One approach to improving the personalized treatment of cancer is to understand the cellular signaling transduction pathways that cause cancer at the level of the individual patient. In this study, we used unsupervised deep learning to learn the hierarchical structure within cancer gene...
Autores principales: | Young, Jonathan D., Cai, Chunhui, Lu, Xinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5629551/ https://www.ncbi.nlm.nih.gov/pubmed/28984190 http://dx.doi.org/10.1186/s12859-017-1798-2 |
Ejemplares similares
-
Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells
por: Leelatian, Nalin, et al.
Publicado: (2020) -
Unsupervised Machine Learning to Identify Depressive Subtypes
por: Kung, Benson, et al.
Publicado: (2022) -
Deep learning algorithm reveals two prognostic subtypes in patients with gliomas
por: Tian, Jing, et al.
Publicado: (2022) -
Identification of transdiagnostic psychiatric disorder subtypes using unsupervised learning
por: Pelin, Helena, et al.
Publicado: (2021) -
Molecular Subtypes of Glioblastoma Are Relevant to Lower Grade Glioma
por: Guan, Xiaowei, et al.
Publicado: (2014)