Cargando…
SAIC: an iterative clustering approach for analysis of single cell RNA-seq data
BACKGROUND: Research interests toward single cell analysis have greatly increased in basic, translational and clinical research areas recently, as advances in whole-transcriptome amplification technique allow scientists to get accurate sequencing result at single cell level. An important step in the...
Autores principales: | Yang, Lu, Liu, Jiancheng, Lu, Qiang, Riggs, Arthur D., Wu, Xiwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5629617/ https://www.ncbi.nlm.nih.gov/pubmed/28984204 http://dx.doi.org/10.1186/s12864-017-4019-5 |
Ejemplares similares
-
SAIC 4.0 SCIAN /
Publicado: (2003) -
SAIC Sistema Automatizado de Información Censal 3.1.
Publicado: (1996) -
An Iterative Leave-One-Out Approach to Outlier Detection in RNA-Seq Data
por: George, Nysia I., et al.
Publicado: (2015) -
An active learning approach for clustering single-cell RNA-seq data
por: Lin, Xiang, et al.
Publicado: (2022) -
Iterative transfer learning with neural network for clustering and cell type classification in single-cell RNA-seq analysis
por: Hu, Jian, et al.
Publicado: (2020)