Cargando…
Effect of Vaccine-Elicited Antibodies on Colonization of Neisseria meningitidis Serogroup B and C Strains in a Human Bronchial Epithelial Cell Culture Model
Capsular polysaccharide-protein conjugate vaccines protect individuals from invasive disease and decrease carriage, which reduces spread of the organism in the population. In contrast, antibodies elicited by plain polysaccharide or protein antigen-based meningococcal (Men) vaccines have little or no...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5629670/ https://www.ncbi.nlm.nih.gov/pubmed/28794055 http://dx.doi.org/10.1128/CVI.00188-17 |
_version_ | 1783269090577612800 |
---|---|
author | Vianzon, Vianca Illek, Beate Moe, Gregory R. |
author_facet | Vianzon, Vianca Illek, Beate Moe, Gregory R. |
author_sort | Vianzon, Vianca |
collection | PubMed |
description | Capsular polysaccharide-protein conjugate vaccines protect individuals from invasive disease and decrease carriage, which reduces spread of the organism in the population. In contrast, antibodies elicited by plain polysaccharide or protein antigen-based meningococcal (Men) vaccines have little or no effect on decreasing carriage. In this study, we investigated the mechanism by which vaccine-induced human immunoglobulin G (IgG) antibodies affect colonization by meningococcal serogroup B (MenB) or C (MenC) strains using a human bronchial epithelial cell culture model (16HBE14o-). Fluorescence microscopy showed that bacteria colonizing the apical side of 16HBE14o- monolayers had decreased capsular polysaccharide on the bacterial surface that resulted from shedding the capsule and not decreased production of polysaccharide. Capsular polysaccharide shedding depended on the presence of 16HBE14o- cells and bacteria but not direct adherence of the bacteria to the cells. Treatment of bacteria and cells with postimmunization MenC-conjugate IgG or murine anti-MenB polysaccharide monoclonal antibodies (MAbs) inhibited capsule shedding, microcolony dispersal, and invasion of the 16HBE14o- cell monolayer. In contrast, the IgG responses elicited by immunization with MenC polysaccharide (PS), MenB outer membrane vesicle (OMV)-based, or factor H binding protein (FHbp)-based vaccines were not different than preimmune IgG or no-treatment response. The results provide new insights on the mechanism by which high-avidity anticapsular antibodies elicited by polysaccharide-conjugate vaccines affect meningococcal colonization. The data also suggest that any effect on colonization by IgG elicited by OMV- or FHbp-based vaccines may involve a different mechanism. |
format | Online Article Text |
id | pubmed-5629670 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-56296702017-10-11 Effect of Vaccine-Elicited Antibodies on Colonization of Neisseria meningitidis Serogroup B and C Strains in a Human Bronchial Epithelial Cell Culture Model Vianzon, Vianca Illek, Beate Moe, Gregory R. Clin Vaccine Immunol Vaccines Capsular polysaccharide-protein conjugate vaccines protect individuals from invasive disease and decrease carriage, which reduces spread of the organism in the population. In contrast, antibodies elicited by plain polysaccharide or protein antigen-based meningococcal (Men) vaccines have little or no effect on decreasing carriage. In this study, we investigated the mechanism by which vaccine-induced human immunoglobulin G (IgG) antibodies affect colonization by meningococcal serogroup B (MenB) or C (MenC) strains using a human bronchial epithelial cell culture model (16HBE14o-). Fluorescence microscopy showed that bacteria colonizing the apical side of 16HBE14o- monolayers had decreased capsular polysaccharide on the bacterial surface that resulted from shedding the capsule and not decreased production of polysaccharide. Capsular polysaccharide shedding depended on the presence of 16HBE14o- cells and bacteria but not direct adherence of the bacteria to the cells. Treatment of bacteria and cells with postimmunization MenC-conjugate IgG or murine anti-MenB polysaccharide monoclonal antibodies (MAbs) inhibited capsule shedding, microcolony dispersal, and invasion of the 16HBE14o- cell monolayer. In contrast, the IgG responses elicited by immunization with MenC polysaccharide (PS), MenB outer membrane vesicle (OMV)-based, or factor H binding protein (FHbp)-based vaccines were not different than preimmune IgG or no-treatment response. The results provide new insights on the mechanism by which high-avidity anticapsular antibodies elicited by polysaccharide-conjugate vaccines affect meningococcal colonization. The data also suggest that any effect on colonization by IgG elicited by OMV- or FHbp-based vaccines may involve a different mechanism. American Society for Microbiology 2017-10-05 /pmc/articles/PMC5629670/ /pubmed/28794055 http://dx.doi.org/10.1128/CVI.00188-17 Text en Copyright © 2017 Vianzon et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Vaccines Vianzon, Vianca Illek, Beate Moe, Gregory R. Effect of Vaccine-Elicited Antibodies on Colonization of Neisseria meningitidis Serogroup B and C Strains in a Human Bronchial Epithelial Cell Culture Model |
title | Effect of Vaccine-Elicited Antibodies on Colonization of Neisseria meningitidis Serogroup B and C Strains in a Human Bronchial Epithelial Cell Culture Model |
title_full | Effect of Vaccine-Elicited Antibodies on Colonization of Neisseria meningitidis Serogroup B and C Strains in a Human Bronchial Epithelial Cell Culture Model |
title_fullStr | Effect of Vaccine-Elicited Antibodies on Colonization of Neisseria meningitidis Serogroup B and C Strains in a Human Bronchial Epithelial Cell Culture Model |
title_full_unstemmed | Effect of Vaccine-Elicited Antibodies on Colonization of Neisseria meningitidis Serogroup B and C Strains in a Human Bronchial Epithelial Cell Culture Model |
title_short | Effect of Vaccine-Elicited Antibodies on Colonization of Neisseria meningitidis Serogroup B and C Strains in a Human Bronchial Epithelial Cell Culture Model |
title_sort | effect of vaccine-elicited antibodies on colonization of neisseria meningitidis serogroup b and c strains in a human bronchial epithelial cell culture model |
topic | Vaccines |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5629670/ https://www.ncbi.nlm.nih.gov/pubmed/28794055 http://dx.doi.org/10.1128/CVI.00188-17 |
work_keys_str_mv | AT vianzonvianca effectofvaccineelicitedantibodiesoncolonizationofneisseriameningitidisserogroupbandcstrainsinahumanbronchialepithelialcellculturemodel AT illekbeate effectofvaccineelicitedantibodiesoncolonizationofneisseriameningitidisserogroupbandcstrainsinahumanbronchialepithelialcellculturemodel AT moegregoryr effectofvaccineelicitedantibodiesoncolonizationofneisseriameningitidisserogroupbandcstrainsinahumanbronchialepithelialcellculturemodel |